Bibolamazi Documentation
Release 3.0

Philippe Faist

May 31, 2015

Contents

Introduction to Bibolamazi 3
1.1 Example Usage Scenario o o i i ittt e e e e e e e e 3
1.2 Teaser: Features i i i e e e e e 4
Downloading and Installing Bibolamazi 5
2.1 The Bibolamazi Application L e e e e 5
2.2 Installing the Command-Line Interface 5
Using the Bibolamazi Application 7
3.1 Bibolamazi Operating Mode 0 i i e e e e e e e e e 7
3.2 The Bibolamazi Configuration Section it 7
3.3 Example/Template Configuration Section 8
34 Available Filters L e e e 9
3.5 Filter Packages 9
Using Bibolamazi in Command-Line 11
4.1 First Steps With Bibolamazi Command-Line 11
4.2 Bibolamazi Operating Mode e e e e 11
4.3 The Bibolamazi Configuration Section v i v v it e e e e e 12
4.4 Content of the Configuration Section o i i e e 12
4.5 Example Full BibolamaziFile 12
4.6 Querying Available Filters and Filter Documentation 13
4.7 Specifying Filter Packages 14
Writing a New Filter 15
5.1 Exampleofacustomfilter e 15
5.2 Developing Custom filters L e 17
53 TheFilterModule e 18
5.4 Passing Arguments tothe Filter L e 18
5.5 Filter General Help Documentation 19
5.6 Argdocs: Filter Argument Documentation L. 0oL o 19
5.7 Customizing Default Behavior 20
Python API: Core Bibolamazi Module 21
6.1 Modulecontents L e e e e e e e e e 21
6.2 Subpackages e 21
6.3 bibolamazi.core.argparseactions module L. 33
6.4 bibolamazi.core.bibolamazifilemodule L oo 34
6.5 bibolamazi.core.bloggermoduleo oL 40

6.6 bibolamazi.core.butils module e
6.7 bibolamazi.core.main module L e e e
6.8 bibolamazi.core.version module L L e e e e

7 Python API: Filter Utilities Package
7.1 Dbibolamazi.filters.util.arxivutilModule
7.2 bibolamazi.filters.util.auxfileModule

8 Credits, Copyright and Contact information

8.1 Copyright e e e e e e e
8.2 Credits and Third-Party Code e
83 Contact L e e e e e e e e e e

9 Indices and tables

Python Module Index

45
45
46

47
47
47
47

49

51

Bibolamazi Documentation, Release 3.0

Table of Contents:

Contents 1

Bibolamazi Documentation, Release 3.0

2 Contents

CHAPTER 1

Introduction to Bibolamazi

Bibolamazi lets you prepare consistent and uniform BibTeX files for your LaTeX documents. It lets you prepare your
BibTeX entries as you would like them to be—adding missing or dropping irrelevant information, capitalizing names
or turning them into initials, converting unicode characters to latex escapes, etc.

1.1

Example Usage Scenario

A typical scenario of Bibolamazi usage might be:

You use a bibliography manager, such as Mendeley, to store all your references. You have maybe configured
e.g. Mendeley to keep a BibTeX file Documents/bib/MyLibrary.bib in sync with your library;

You’re working, say on a document mydoc . tex, which cites entries from MyLibrary.bib;

You like to keep URLSs in your entries in your Mendeley library, because it lets you open the journal page easily,
but you don’t want the URLSs to be displayed in the bibliography of your document mydoc. tex. But you've
gone through all the bibliography styles, and really, the one you prefer unfortunatly does display those URLs.

You don’t want to edit the file MyLibrary.bib, because it would just be overwritten again the next time you
open Mendeley. The low-tech solution (what people generally do!) would then be to export the required citations
from Mendeley to a new bibtex file, or copy MyLibrary.bib to a new file, and edit that file manually.

To avoid having to perform this tedious task manually, you can use Bibolamazi to prepare the BibTeX file as
you would like it to be. For this specific task, for example, you would perform the following steps:

— Create a bibolamazi file, say, mydoc.bibolamazi.bib;

— Specify as a source your original MyLibrary.bib:

src: ~/Documents/bib/MyLibrary.bib

— Give the following filter command:

filter: url —-dStrip

which instructs to strip all urls (check out the documentation of the url filter in the Help & Reference
Browser)

— Run bibolamazi.

— Use this file as your bibtex bibliography, i.e. in your LaTeX document, use:

\bibliography{mydoc.bibolamazi}

http://mendeley.com/
http://mendeley.com/

Bibolamazi Documentation, Release 3.0

Note that you can then run Bibolamazi as many times as you like, to update your file, should there have been
changes to your original MyLibrary.bib, for example.

1.2 Teaser: Features

The most prominent features of Bibolamazi include:

* A duplicates filter allows you to efficiently collaborate on LaTeX documents: in your shared LaTeX document,
each collaborator may cite entries in his own bibliography database (each a source in the bibolamazi file).
Then, if instructed to do so, bibolamazi will detect when two entries are duplicates of each other, merge their
information, and produce LaTeX definitions such that the entries become aliases of one another. Then both entry
keys will refer to the same entry in the bibliography.

Catch: there is one catch to this, though, which we can do nothing about: if two entries in two different database
share the same key, but refer to different entries. This may happen, for example, if you have automatic citation
keys of the form AuthorYYYY, and if the author published several papers that same year.

* A powerful arxiv filter, which can normalize the way entries refer to the arXiv.org online preprint repository. It
can distinguish between published and unpublished entries, and its output is highly customizable.

* A general-purpose fixes filter provides general fixes that are usually welcome in a BibTeX files. For example,
revtex doesn’t like Mendeley’s way of exporting swedish ‘A’, for example in Aberg, as \AA berg, and
introduces a space between the ‘A’ and the ‘berg’. This filter allows you to fix this.

* Many more! Check out the filter list in the Help & Reference Browser window of Bibolamazi!

4 Chapter 1. Introduction to Bibolamazi

CHAPTER 2

Downloading and Installing Bibolamazi

Bibolamazi comes in two flavors:
* an Application that runs on Mac OS X, Linux and Windows (this is what most users probably want)
* a command-line tool (for more advanced and automated usage)

There are precompiled ready-for-use binaries for the Application (see below, The Bibolamazi Application). Alter-
natively, both flavors may be installed using pip/setuptools or from source (see Installing the Command-Line
Interface).

2.1 The Bibolamazi Application

If you’re unsure which flavor to get, this is the one you’re looking for. It’s straightfoward to download, there is no
installation required, and the application is easy to use.

Download the latest release from our releases page:
Download Release: https://github.com/phfaist/bibolamazi/releases
These binaries don’t need any installation, you can just download them, place them wherever you want, and run them.

You may now start using Bibolamazi normally. To read more on bibolamazi, skip to Using the Bibolamazi Application.

2.2 Installing the Command-Line Interface

Bibolamazi runs with Python 2.7 (this is there by default on most linux and Mac systems).

Additionally, the graphical user interface requires PyQt4. If you’re on a linux distribution, it’s most probably in your
distribution packages. Note you only need PyQt4 to run the graphical user interface: the command-line version will
happily run without.

The easy way: via PIP

The recommended way to install Bibolamazi command line and gui interfaces is via pip:

pip install bibolamazi # for the command-line interface
pip install bibolamazigui # if you want the GUI interface

After that, you’ll find the bibolamazi (respectively bibolamazi_gui) executables in your PATH:

https://github.com/phfaist/bibolamazi/releases
http://www.riverbankcomputing.com/software/pyqt/download

Bibolamazi Documentation, Release 3.0

> bibolamazi --help # command-line interface
(«.2)

> bibolamazi_gui # to launch the GUI

(...)

The less easy way: From Source
You may, alternatively, download and compile the packages from source.

» First, clone this repository on your computer (don’t download the prepackaged ZIP/Tarball proposed by github,
because there will be missing submodules):

> cd somewhere/where/Ill-keep-bibolamazi/
...> git clone —--recursive https://github.com/phfaist/bibolamazi

Note the ——recursive switch which will also retrieve all required submodules.

* Then, run the setup script to install the package and script (see Installing Python Modules):

> python setup.py install

After that, you should find the bibolamazi executable in your PATH automatically:

> bibolamazi --help

* If you want to install the GUI Application, you need to do that seperately. Go into the gui/ directory of the
source code, and run the python setup script there:

> cd gui/
gui> python setup.py install

After that, you should find the bibolamazi_gui executable in your PATH automatically:

> bibolamazi_gui

6 Chapter 2. Downloading and Installing Bibolamazi

https://docs.python.org/2/install/

CHAPTER 3

Using the Bibolamazi Application

3.1 Bibolamazi Operating Mode

Bibolamazi works by reading your reference bibtex files—the ‘sources’, which might for example have been generated
by your favorite bibliography manager or provided by your collaborators—and merging them all into a new file,
applying specific rules, or ‘filters’, such as turning all the first names into initials or normalizing the way arxiv IDs are
presented.

The Bibolamazi file is this new file, in which all the required bibtex entries will be merged. When you prepare you
LaTeX document, you should create a new bibolamazi file, and provide that bibolamazi file as the bibtex file for the
bibliography.

When you open a bibolamazi file, you will be prompted to edit its configuration. This is the set of rules which will tell
bibolamazi where to look for your bibtex entries and how to handle them. You first need to specify all your sources,
and then all the filters.

The bibolamazi file is then a valid BibTeX file to include into your LaTeX document, so if your bibolamazi file is
named main.bibolamazi.bib, you would include the bibliography in your document with a LaTeX command
similar to:

‘\bibliography{main.bibolamazi}

3.2 The Bibolamazi Configuration Section

If you open the Bibolamazi application and open your bibolamazi file (or create a new one), you’ll immediately be
prompted to edit its configuration section.

3.2.1 Specifying sources

Sources are where your ‘original’ bibtex entries are stored, the ones you would like to process. This is typically a
bibtex file which a reference manager such as Mendeley keeps in sync.

Sources are specified with the src: keyword. As an example:

o)

% src: mysource.bib

You should specify one or more files from which entries should be read. If more than one file is given, only the FIRST
file that exists is read. This is useful for example, if on different computers your bibtex is elsewhere:

Bibolamazi Documentation, Release 3.0

)

% src: /home/philippe/bibtexfiles/mylibrary.bib /Users/philippe/bibtexfiles/mylibrary.bib

You may also specify HTTP or FTP URLs. If your filename or URL contains spaces, enclose the name in double
quotes: "My Bibtex Library.bib".

To specify several sources that should be read independently, simply use multiple src: commands:

oe

filel.bib [alternativefilel.bib ...]

rc
r file2.bib [alternativefile2.bib ...]

C

-

s
S
[

o° o

This would collect all the entries from the first existing file of each src: command.

3.2.2 Specifying filters

Once all the entries are collected from the various sources, you may now apply filters to them.

A filter is applied using the filter: command:

)

% filter: filtername [options and arguments]

Filters usually accept options and arguments in a shell-like fashion, but this may vary in principle from filter to filter.
For example, one may use the arxiv filter to strip away all arXiv preprint information from all published entries, and
normalize unpublished entries to refer to the arxiv in a uniform fashion:

)

% filter: arxiv —--mode=strip --unpublished-mode=eprint ‘

A full list of options can be obtained with:

‘> bibolamazi —--help arxiv ‘

and more generally, for any filter:

’> bibolamazi —--help <filtername> ‘

A list of available filters can be obtained by running:

’> bibolamazi —--list-filters ‘

Note: Filters are organized into filter packages (see below). A filter is searched in each filter package until a match is
found. To force the lookup of a filter in a specific package, you may prefix the package name to the filter, e.g.:

)

% filter: myfilterpackage:myfiltername —--optionl=vall ... ‘

3.3 Example/Template Configuration Section

BIBOLAMAZI configuration section.
Additional two leading percent signs indicate comments in the configuration.

%% *x%x% SOURCES **x*x
%% The _first_ accessible file in _each_ source list will be read and filtered.

src: <source file 1> [<alternate source file 1> ...]
src: <source file 2> [...]

%% Add additional sources here. Alternative files are useful, e.g., if the same

8 Chapter 3. Using the Bibolamazi Application

Bibolamazi Documentation, Release 3.0

o
o

file must be accessed with different paths on different machines.

o\
o\

x*k*xx FILTERS *%%x%

Specify filters here. Specify as many filters as you want, each with a “filter:'
directive. See also "bibolamazi --list-filters' and “bibolamazi --help <filter>"'.

o o°
o° o

filter: filter_name <filter options>

%% Example:
filter: arxiv -sMode=strip -sUnpublishedMode=eprint

Finally, if your file is in a VCS, sort all entries by citation key so that you don't
get huge file differences for each commit each time bibolamazi is run:
ilter: orderentries

oo oo
o° oo

H

3.4 Available Filters

You can get a full list of available filters if you open the bibolamazi help & reference browser window (from the main
application startup window). You can click on the various filters displayed to view their documentation on how to use
them.

3.5 Filter Packages

Filters are organized into filter packages. All built-in filters are in the package named filters. If you want to write your
own filters, or use someone else’s own filters, then you can install further filter packages.

A filter package is a Python package, i.e. a directory containinga __init__ .py file, which contains python modules
that implement the bibolamazi filter API.

If you develop your own filters, it is recommended to group them in a filter package, and not for example fiddle with
the built-in filter package. Put your filters in a directory called, say, myfilters, and place an additional empty file in it
called __init__.py. This will create a python package named myfilters with your filters as submodules.

To register the filter packages so that bibolamazi knows where to look for your filters, open the settings dialog, and
click “Add filter package ...”; choose the directory corresponding to your filter package (e.g. myfilters). Now you can
refer in your bibolamazi file to the filters within your filter package with the syntax myfilters:filtername or
simply filtername (as long as the filter name does not clash with another filter of the same name in a different
filter package).

3.4. Available Filters 9

Bibolamazi Documentation, Release 3.0

10 Chapter 3. Using the Bibolamazi Application

CHAPTER 4

Using Bibolamazi in Command-Line

4.1 First Steps With Bibolamazi Command-Line

Once you’ve installed bibolamazi as described in Installing the Command-Line Interface, you may start using it! Here
are a couple of commands to get you started playing around. But it’s important to understand how Bibolamazi works:
for that, read the following sections of this manual carefully.

* To compile a bibolamazi bibtex file, you should run bibolamazi in general as:

> bibolamazi bibolamazibibtexfile.bibolamazi.bib

* To quickly get started with a new bibolamazi file, the following command will create the given file and produce
a usable template which you can edit:

> bibolamazi —--new newfile.bibolamazi.bib

» For an example to study, look at the test files test/testX.bibolamazi.bib in the source code. To
compile them, run:

> bibolamazi test/test0.bibolamazi.bib

* For a help message with a list of possible options, run:

> pbibolamazi --help

To get a list of all available filters along with their description, run:

> bibolamazi --list-filters

To get information about a specific filter, simply use the command:

> bibolamazi --help <filter>

4.2 Bibolamazi Operating Mode

Bibolamazi works by reading a bibtex file (say main.bibolamazi.bib) with a special bibolamazi configuration
section at the top. These describe on one hand sources, and on the other hand filters. Bibolamazi first reads all the
entries in the given sources (say sourcel.bib and source?2.bib), and then applies the given filters to them.
Then, the main bibtex file (in our example main.bibolamazi.bib) is updated, such that:

* Any content that was already present in the main bibtex file before the configuration section is restored un-
changed;

11

Bibolamazi Documentation, Release 3.0

* The configuration section is restored as it was;

 All the filtered entries (obtained from, e.g., sourcel.bib and source?2.bib) are then dumped in the rest
of the file, overwriting the rest of main.bibolamazi.bib (which logically contained output of a previous
run of bibolamazi).

The bibolamazi file main.bibolamazi.bib is then a valid BibTeX file to include into your LaTeX document, so
you would include the bibliography in your document with a LaTeX command similar to:

’\bibliography{main.bibolamazi}

4.3 The Bibolamazi Configuration Section

The main bibtex file should contain a block of the following form:

o\

%$%-BIB-OLA-MAZI-BEGIN-%%%

o°

oe

bibolamazi configuration section

o\

oo

%$%-BIB-OLA-MAZI-END-%%%

The configuration section is started by the string %% %-BIB-OLA-MAZI-BEGIN-%%% on its own line, and is termi-
nated by the string %% %-BIB-OLA-MAZI-END-% % %, also on its own line. The lines between these two markers are
the body of the configuration section, and are where you should specify sources and filters. Leading percent signs on
these inner lines are ignored. Comments can be specified in the configuration body with two additional percent signs,

e.g.:

‘% %$% This is a comment

4.4 Content of the Configuration Section

The content of the configuration section is the same as described in The Bibolamazi Configuration Section. Of course,
you’ll probably want to prefix all lines by an additional ‘%’ to make sure it gets interpreted as a bibtex comment (see
example below).

4.5 Example Full Bibolamazi File

Here is a minimal example of a bibolamazi bibtex file:

Additionnal stuff here will not be managed by bibolamazi. It will also not be
overwritten. You can e.g. temporarily add additional references here if you
don't have bibolamazi installed.

o\

%$%-BIB-OLA-MAZI-BEGIN-%%%

o°

o°
o

% BIBOLAMAZI configuration section.
Additional two leading percent signs indicate comments in the configuration.

oo o
o\
o\

oe
o
oe

4%* SOURCES *x*x*x%*

o\

o\
o\
o\

The _first_ accessible file in _each_ source list will be read and filtered.

o

12 Chapter 4. Using Bibolamazi in Command-Line

Bibolamazi Documentation, Release 3.0

src: <source file 1> [<alternate source file 1> ...]
src: <source file 2> [...]

o° o
o° o

file must be accessed with different paths on different machines.

o\
o\

*4,44% FILTERS **x%%

o o\
o o

filter: filter_name <filter options>

%% Example:
ilter: arxiv —-sMode=strip -sUnpublishedMode=eprint

Hh

o o
o° o

get huge file differences for each commit each time bibolamazi is run:
filter: orderentries

%$%-BIB-OLA-MAZI-END-%%%

ALL CHANGES BEYOND THIS POINT WILL BE LOST NEXT TIME BIBOLAMAZI IS RUN.

o o o® o A O O A O° A O A O A A O A O A° O O° o o° o° o

bibolamazi filtered entries

Add additional sources here. Alternative files are useful, e.g., if the same

Specify filters here. Specify as many filters as you want, each with a “filter:'
directive. See also "bibolamazi --list-filters' and "bibolamazi --help <filter>"'.

Finally, if your file is in a VCS, sort all entries by citation key so that you doy

L't

4.6 Querying Available Filters and Filter Documentation

A complete list of available filters, along with a short description, is obtained by:

> bibolamazi —--list-filters

Run that command to get an up-to-date list. At the time of writing, the list of filters is:

> bibolamazi —--list-filters

List of available filters:

Package "“filters':

arxiv ArXiv clean-up filter: normalizes the way each biblographic
entry refers to arXiv IDs.

citearxiv Filter that fills BibTeX files with relevant entries to cite
with \cite{1211.1037}

citekey Set the citation key of entries in a standard format

duplicates Filter that detects duplicate entries and produces rules to make
one entry an alias of the other.

fixes Fixes filter: perform some various known fixes for bibtex
entries

nameinitials Name Initials filter: Turn full first names into only initials
for all entries.

only_used Filter that keeps only BibTeX entries which are referenced in
the LaTeX document

4.6. Querying Available Filters and Filter Documentation

13

Bibolamazi Documentation, Release 3.0

orderentries Order bibliographic entries in bibtex file
url Remove or add URLs from entries according to given rules, e.g.
whether DOI or ArXiv ID are present

Filter packages are listed in the order they are searched.

Use Dbibolamazi --help <filter> for more information about a specific filter
and its options.

4.7 Specifying Filter Packages

The command-line bibolamazi by default only knows the built-in fitler package £ilters. You may however specify
additional packages either by command-line options or with an environment variable.

You can specify additional filter packages with the command-line option —-filter-package:

> bibolamazi myfile.bibolamazi.bib --filter-package 'packagel=/path/to/filter/pack’

The argument to ——filter-package is of the form ‘packagename=/path/to/the/filter/package’. Note that the path
is which path must be added to python’s sys.path in order to import the filterpackagename package itself,
i.e. the last item of the path must not be the package directory.

This option may be repeated several times to import different filter packages. The order is relevant; the packages
specified last will be searched for first.

You may also set the environment variable BIBOLAMAZI_FILTER_PATH. The format is
filterpackl=/path/to/somewhere:filterpack2=/path/to/otherplace:..., ie. a list of
filter package specifications separated by ‘:° (Linux/Mac) or ;> (Windows). Each filter package specification has the
same format as the command-line option argument. In the environment variable, the first given filter packages are
searched first.

14 Chapter 4. Using Bibolamazi in Command-Line

CHAPTER 5

Writing a New Filter

5.1 Example of a custom filter

import random # for example purposes

use this for logging output
import logging
logger = logging.getLogger (__name__)

core filter classes

from bibolamazi.core.bibfilter import BibFilter, BibFilterError

types for passing arguments to the filter

from bibolamazi.core.bibfilter.argtypes import CommaStrList, enum_class
utility to parse boolean values

from bibolamazi.core.butils import getbool

——— help texts ——-

HELP_AUTHOR = u"""\
Test Filter by Philippe Faist, (C) 2014, GPL 3+

nwn

HELP_DESC = u"""\

Test Filter: adds a 'testFilter' field to all entries, with wvarious values.
mmw

HELP_TEXT = u"""
There are three possible operating modes:

"empty" —- add an empty field 'testField' to all entries.

"random" —-- the content of the 'testField' field which we add to all entries
is completely random.

"fixed" -- the content of the 'testField' field which we add to all entries

is a hard-coded, fixed string. Surprise!

Specify which operating mode you prefer with the option '-sMode=...'. By
default, "random" mode is assumed.
—-—— operating modes ——-—

15

Bibolamazi Documentation, Release 3.0

Here we define a custom enumeration type for passing as argument to our
constructor. By doing it this way, instead of simply accepting a string,
allows the filter factory mechanism to help us report errors and provide more
helpful help messages. Also, 1in the graphical interface the relevant option 1is
presented as a drop-down list instead of a text field.

H R W

numerical values —-- numerical values just have to be different
MODE_EMPTY = 0

MODE_RANDOM = 1

MODE_FIXED = 2

symbolic names and to which values they correspond
_modes = [

("empty', MODE_EMPTY),

('random', MODE_RANDOM),

('fixed', MODE_FIXED),

]

our Mode type. See “bibolamazi.core.bibfilter.argtypes’
Mode = enum_class ('Mode', _modes, default_value=MODE_NONE,
value_attr_name='mode")

—-—— the filter object itself —--
class MyTestFilter (BibFilter):

import help texts above here
helpauthor = HELP_AUTHOR
helpdescription = HELP_DESC
helptext = HELP_TEXT

def _ _init__ (self, mode="random", use_uppercase_text=False):
mmn

Constructor method for TestFilter.

Note that this part of the constructor docstring itself isn't that
useful, but the argument 1list below is parsed and used by the default
automatic option parser for filter arguments. So document your
arqguments! If your filter accepts " #*#kwargs , you may add more arguments
below than you explicitly declare in your constructor prototype.

If this function accepts " *args , then additional positional arguments
on the filter line will be passed to those args. (And not to the
declared arguments.)

Arguments:
- mode (Mode) : the operating mode to adopt
- use_uppercase_text (bool): if set to True, then transform our added

text to uppercase characters.
mirnm

BibFilter._ init_ (self)

self.mode = Mode (mode)
self.use_uppercase_text = getbool (use_uppercase_text)

logger.debug('test filter constructor: mode=%s, use_uppercase_text=%s',

16 Chapter 5. Writing a New Filter

Bibolamazi Documentation, Release 3.0

self.mode, self.use_uppercase_text)

def action(self):
Here, we want the filter to operate entry-by-entry (so the function
‘self.filter_bibentry () will be called). If we had preferred to
operate on the whole bibliography database in one go (as, e.g., for
the ‘duplicates’ filter), then we would have to return
'BibFilter.BIB FILTER BIBOLAMAZIFILE ' here, and provide a
‘filter bibolamazifile () method.
#

return BibFilter.BIB_FILTER_SINGLE_ENTRY

def requested_cache_accessors (self):
return the requested cache accessors here if you are using the cache
mechanism. This also applies if you are using the ‘arxivutil’
utilities.
return []

def filter_bibentry(self, entry):

#
entry is a pybtex.database.Entry object
#
if self.mode == MODE_EMPTY:
entry.fields['testField'] = "'
elif self.mode == MODE_RANDOM:
entry.fields['testField'] = random.randint (0, 999999)
elif self.mode == MODE_FIXED:
entry.fields['testField'] = (
u"On d\uOOE9daigne volontiers un but qu'on n'a pas "
u"r\uOOE9ussi \uOOEO atteindre, ou qu'on a atteint "
u"d\uOOE9finitivement. (Proust)"
)
else:
raise BibFilterError('testfilter', "Unknown operating mode: 2s"
% mode)

if self.use_uppercase_text:
entry.fields['testField'] = entry.fields['testField'].toupper ()

return

#
Every python module which defines a filter should have the following method,
which returns the filter class type (which is expected to be a 'BibFilter’
subclass) .
#
def bibolamazi_filter_ class():
return MyTestFilter

5.2 Developing Custom filters

Writing filters is straightforward. An example is provided here: Example of a custom filter. Look inside the
bibolamazi/filters/ directory at the existing filters for further examples, e.g. arxiv.py,duplicates.py

5.2. Developing Custom filters 17

Bibolamazi Documentation, Release 3.0

or url.py. They should be rather simple to understand.
A filter can either act on individual entries (e.g. the arxiv.py filter), or on the whole database (e.g. duplicates.py).

For your organization, it is recommended to develop your filter(s) in a custom filter package which you keep a repos-
itory e.g. on github.com, so that the filter package can be easily installed on the different locations you would like to
run bibolamazi from.

Don’t forget to make use of the bibolamazi cache, in case you fetch or compute values which you could cache for fur-
ther reuse. You should access caches through the BibUserCacheAccessor class. Look at for the documentation
for the bibusercache module. Look at examples most of all!! (TODO: add documentation about caches)

There are a couple utilities provided for the filters, check the bibolamazi.filters.util module. In particular
check out the arxivutil and auxfile modules.

Feel free to contribute filters, it will only make bibolamazi more useful!

5.3 The Filter Module

There are two main objects your module should define at the very least:
¢ afilter class, subclass of BibFilter.

e amethod called bibolamazi_filter_class (), which should return the filter class object. For example:

def bibolamazi_filter_class () :
return ArxivNormalizeFilter;

You may want to have a look at Example of a custom filter for an example of a custom filter.

Your filter should log error, warning, information and debug messages to a logger obtained via Python’s logging
mechanism, as demonstrated in the example.

5.4 Passing Arguments to the Filter

Command line arguments passed to the filter in the user’s bibolamazi config section are parsed into Python arguments
to the filter class’ constructor. The translation is rather intuitive: each argument to the filter may be specified as an
option, either using the syntax ——use—-uppercase=value or ——use—uppercase value, where underscores
are replaced by dashes, or using the Ghostscript-like syntax —dUseUppercase or —dUseUppercase=false, or
for other types —sMode=fixed.

Some remarks:

¢ to each filter argument corresponds a command-line option starting with ——, where underscores are replaced by
dashes. The command-line takes a single mandatory argument (except for arguments declared as booleans in
their arg-docs, see Argdocs: Filter Argument Documentation below).

e to each filter argument, corresponds a command-line option starting with —-d or —s, using the syntax
-dFilterOptionName, ~dFilterOptionName=Value or —sFilterOptionName=Value. The
—d variant is used to specify boolean option values, the —s variant any other type. The FilterOptionName
is obtained by camel-casing the filter python argument: for example, if the filter constructor accepts
an argument named use_uppercase_chars, then the corresponding camel-cased version will be
UseUppercaseChars. (See note below on case sensitivity.)

¢ each filter argument may be documented using Argdocs: Filter Argument Documentation. This information will
appear in the filter help text.

18 Chapter 5. Writing a New Filter

https://docs.python.org/2/library/logging.html
https://docs.python.org/2/library/logging.html

Bibolamazi Documentation, Release 3.0

« if the filter constructor accepts a » xkwargs, then any additional option-value pairs given as —sKey=Value
or —dKey or —dKey=Value are passed on to the filter constructor’s kwargs.

« if the filter constructor accepts a *args, then any additional positional arguments on the command line is
passed to that xargs parameter. The ordering of positional and optional arguments on the command-line make
no difference. (Note that this also works this way if not all the previous declared arguments are specified.
There’s some python hacking in there ;))

Note: If even a single filter argument uses an uppercase letter, then the option parser will not convert any letter casing,
and all option names will have the exact same letter casing as the filter arguments. Similarly, no camel-casing will

occur with the —s. .. or —d. .. options.

5.5 Filter General Help Documentation

The filter class should declare the members helpauthor, helpdescription and helptext with meaningful
help text:

* helpauthor should be a short one-line description of the filter and contributor with license. E.g.:

ArXiv clean-up filter by Philippe Faist, (C) 2013, GPL 3+

* helpdescription is a brief description of what the filter does. This is displayed right after the Usage
section in the help text, and before the filter arguments description.

* helptext is a long description of what the filter exactly does, how to use it, the advantages, tricks, pitfalls,
etc.

In the built-in filters, as well as the examples, the text is declared outside of the class (see HELP_AUTHOR etc.) so
that we don’t have to deal with the indentation (and in the class, we only have helpauthor=HELP_AUTHOR etc.).
That’s perfectly fair and completely optional.

5.6 Argdocs: Filter Argument Documentation

The docstring of the filter constructor is parsed in a special way. Documentation of the function arguments are specially
parsed: they should have the form:

— argument_name (type) : Description of the argument. The description may
span over several lines.

- other_argument_name: Description of the other option. Notice that the
type is optional and will default to a simple string.

This information will be displayed when running bibolamazi --help filtername.

If a rype is specified, it should be a name of a python type, or a type which is available in the namespace of the
filter module. The filter factory will attempt to convert the given string to the specified type when calling the filter
constructor. If the given fype is a custom type, and it has a docstring, then the docstring is included in the “Note on
Filter Options Syntax” section of the help text.

There are some convenient predefined types for filter arguments, all defined in the module
bibolamazi.bibfilter.argtypes:

* CommaStrList: acomma-separated list of strings. This type may directly be used as a list type.

e enum_class (): a function which returns a custom class which represents an enumeration value of several
options.

5.5. Filter General Help Documentation 19

Bibolamazi Documentation, Release 3.0

Maybe look at the built-in filters and other examples to get an idea.

More doc should come here at some point in the future..........

5.7 Customizing Default Behavior

There are several other functions the module may define, although they are not mandatory.

e parse_args() should parse an argument string, and return a tuple (args, kwargs) of how the filter construc-
tor should be called. If the module does not provide this function, a very powerful default automatic filter option
processor (based on python’s argparse module) is built using the filter argument names as options names.

e format_help() should return a string with full detailed information about how to use the filter, and which options
are accepted. If the module does not provide this function, the default automatic filter option processor is used
to format a useful help text (which should be good enough for most of your purposes, especially if you don’t
want to reinvent the wheel).

Note: the helptext attribute of your BibFilter subclass is only used by the default automatic filter option
processor; so if you implement format_help() manually, the helptext attribute will be ignored.

20

Chapter 5. Writing a New Filter

CHAPTER 6

Python API: Core Bibolamazi Module

6.1 Module contents

Core bibolamazi module.

See bibolamazi.core.bibfilter, bibolamazi.core.bibolamazifile,
bibolamazi.core.bibusercache for the main core modules.

6.2 Subpackages

6.2.1 bibolamazi.core.bibfilter package

bibolamazi.core.bibfilter.argtypes module
class bibolamazi.core.bibfilter.argtypes.CommaStrList (iterable=[])
Bases: 1ist
A list of values, specified as a comma-separated string.
class bibolamazi.core.bibfilter.argtypes.CommaStrListArgType
class bibolamazi.core.bibfilter.argtypes.EnumArgType (listofvalues)

bibolamazi.core.bibfilter.argtypes.enum_ class (class_name, values, default_value=0,

value_attr_name="value’)
class_name is the class name.

values should be a list of tuples (string_key, numeric_value) of all the expected string names and of their corre-
sponding numeric values.

default_value should be the value that would be taken by default, e.g. by using the default constructor.

value_attr_name the name of the attribute in the class that should store the value. For example, the arxiv module
defines the enum class Mode this way with the attribute mode, so that the numerical mode can be obtained with
enumobject.mode.

bibolamazi.core.bibfilter.factory module

class bibolamazi.core.bibfilter.factory.DefaultFilterOptions (filtername,
fclass=None)

21

Bibolamazi Documentation, Release 3.0

filterDeclOptions ()
This gives a list of _ArgDoc named tuples.

filterOptions ()
This gives a list of _ArgDoc named tuples.

filterVarOptions ()
This gives a list of _ArgDoc named tuples.

filtername ()
format_filter help()
getArgNameFromSOpt (x)
getSOptNameFromArg (x)
optionSpec (argname)

parse_optionstring (optionstring)
Parse the given option string (one raw string, which may contain quotes, escapes etc.) into arguments
which can be directly provided to the filter constructor.

parse_optionstring to_optspec (optionstring)
Parses the optionstring, and returns a description of which options where specified, which which values.

This doesn’t go as far as parse_optionstring (), which returns pretty much exactly how to call
the filter constructor. This function is meant for example for the GUI, who needs to parse what the user
specified, and not necessarily how to construct the filter itself.

Return a dictionary:

{
"_args": <additional xpargs positional arguments>
"kwargs": <keyword arguments>

}

The value of _args is either None, or a list of additional positional arguments if the filter accepts *args
(and hence the option parser too). These will only be passed to *args and NOT be distributed to the
declared arguments of the filter constructor.

The value of kwargs is a dictionary of all options specified by keywords, either with the
——keyword=value syntax or with the syntax —sKey=Value. The corresponding value is converted
to the type the filter expects, in each case whenever possible (i.e. documented by the filter).

parser ()
use_auto_case ()

class bibolamazi.core.bibfilter.factory.FilterArgumentParser (filtername, **kwargs)
Bases: argparse.ArgumentParser

error (message)
exit (status=0, message=None)

exception bibolamazi.core.bibfilter.factory.FilterCreateArgumentError (errorstr,

name=None)
Bases: bibolamazi.core.bibfilter.factory.FilterError

Although the filter arguments may have been successfully parsed, they may still not translate to a valid python
filter call (i.e. in terms of function arguments, for example when using both positional and keyword arguments).
This error is raised when the composed filter call is not valid.

fmt (name)

22 Chapter 6. Python API: Core Bibolamazi Module

Bibolamazi Documentation, Release 3.0

exception bibolamazi.core.bibfilter.factory.FilterCreateError (errorstr,

name=None)
Bases: bibolamazi.core.bibfilter.factory.FilterError

There was an error instantiating the filter. This could be due because the filter constructor raised an exception.
fmt (name)

exception bibolamazi.core.bibfilter.factory.FilterError (errorstr, name=None)
Bases: exceptions.Exception

Signifies that there was some error in creating or instanciating the filter, or that the filter has a problem. (It could
be, for example, that a function defined by the filter does not behave as expected. Or, that the option string
passed to the filter could not be parsed.)

This is meant to signify a problem occuring in this factory, and not in the filter. The filter classes themselves
should raise bibfilter. BibFilterError in the event of an error inside the filter.

fmt (name)
setName (name)

exception bibolamazi.core.bibfilter.factory.FilterOptionsParseError (errorstr,

name=None)
Bases: bibolamazi.core.bibfilter.factory.FilterError

Raised when there was an error parsing the option string provided by the user.
fmt (name)

exception bibolamazi.core.bibfilter.factory.FilterOptionsParseErrorHintSInstead (errorstr,

name=None)
Bases: bibolamazi.core.bibfilter.factory.FilterOptionsParseError

As FilterOptionsParseError, but hinting that maybe -sOption=Value was meant instead of -dOption=Value.
fmt (name)

exception bibolamazi.core.bibfilter.factory.NoSuchFilter (fname, errorstr=None)
Bases: exceptions.Exception

Signifies that the requested filter was not found. See also get_module().

exception bibolamazi.core.bibfilter.factory.NoSuchFilterPackage (fpname, er-
rorstr="No such
filter package’,
fpdir=None)
Bases: exceptions.Exception
Signifies that the requested filter package was not found. See also get_module().

class bibolamazi.core.bibfilter.factory.PrependOrderedDict (*args, **kwargs)
Bases: collections.OrderedDict

An ordered dict that stores the items in the order where the first item is the one that was added/modified last.
item_at (idx)
set_at (idx, key, value)
set_items (items)
bibolamazi.core.bibfilter.factory.detect_filter_ package_listings/()

bibolamazi.core.bibfilter.factory.detect_filters (force_redetect=False)

6.2. Subpackages 23

Bibolamazi Documentation, Release 3.0

bibolamazi.core.bibfilter.factory.filter_arg_parser (name)

If the filter name uses the default-based argument parser, then returns a DefaultFilterOptions object that is
initialized with the options available for the given filter name.

If the filter has its own option parsing mechanism, this returns None.

bibolamazi.core.bibfilter.factory.filter uses_default_arg parser (name)

bibolamazi.core.bibfilter.factory.format_filter_ help (filthame)

bibolamazi.core.bibfilter.factory.get_f£filter class (name, filterpackage=None)

bibolamazi.core.bibfilter.factory.get_module (name, raise_nosuchfilter=True, filterpack-

age=None)

bibolamazi.core.bibfilter.factory.load_precompiled_filters (filterpackage, precom-

piled_modules)

filterpackage: name of the filter package under which to scope the given precompiled filter modules.

precompiled_modules: a dictionary of filter_name’: filter_module of precompiled filter modules, along
with their name.

bibolamazi.core.bibfilter.factory.make_filter (name, optionstring)

bibolamazi.core.bibfilter.factory.reset_filters_cache()

bibolamazi.core.bibfilter.factory.validate_filter_package (fpname, fpdir,

raise_exception=True)

Module contents

class bibolamazi.core.bibfilter.BibFilter (*pargs, **kwargs)

Bases: object
Base class for a bibolamazi filter.

To write new filters, you should subclass BibFilter and reimplement the relevant methods. See documentation
of the different methods below to understand which to reimplement.

Constructor. No particular arguments are expected; any received are passed further to superclasses.

BIB_FILTER BIBOLAMAZIFILE =3
A constant that indicates that the filter should act upon the whole bibliography at once. See documentation
for the action () method for more details.

BIB_FILTER SINGLE_ENTRY =1
A constant that indicates that the filter should act upon individual entries only. See documentation for the
action () method for more details.

action()
Return one of BIB FILTER SINGLE ENTRY or BIB FILTER BIBOLAMAZIFILE, which tells
how this filter should function. Depending on the return value of this function, either

filter _bibentry () or filter bibolamazifile () will be called.

If the filter wishes to act on individual entries (like the built-in arxiv or url filters), then the subclass
should return BibFilter.BIB _FILTER _SINGLE_ENTRY. At the time of filtering the data, the func-
tion filter. bibentry () will be called repeatedly for each entry of the database.

If the filter wishes to act on the full database at once (like the built-in duplicates filter), then the sub-
class should return BIB_FILTER BIBOLAMAZIFILE. At the time of filtering the data, the function
filter_bibolamazifile () will be called once with the full BibolamaziFile object as param-
eter. Note this is the only way to add or remove entries to or from the database, or to change their order.

24

Chapter 6. Python API: Core Bibolamazi Module

Bibolamazi Documentation, Release 3.0

Note that when the filter is instantiated by a BibolamaziFile (as is most of the time in practice), then
the function bibolamaziFile () will always return a valid object, independently of the filter’s way of
acting.

bibolamaziFile ()
Get the BibolamaziFile object that we are acting on. (The one previously set by
setBibolamaziFile().)

There’s no use overriding this.

cacheAccessor (klass)
A shorthand for calling the cacheAccessor () method of the bibolamazi file returned by
bibolamaziFile ().

filter_bibentry (x)
The main filter function for filters that filter the data entry by entry.

If the subclass’ action () function returns BibFilter.BIB FILTER SINGLE_ENTRY, then the
subclass must reimplement this function. Otherwise, this function is never called.

The object x is a pybtex.database.Entry object instance, which should be updated according to
the filter’s action and purpose.

The return value of this function is ignored. Subclasses should report warnings and logging
through Python’s logging mechanism (see doc of core.blogger) and should raise errors as
BibFilterError (preferrably, a subclass). Other raised exceptions will be interpreted as internal errors
and will open a debugger.

filter_bibolamazifile (x)
The main filter function for filters that filter the data entry by entry.

If the subclass’ action () function returns BibFilter.BIB FILTER SINGLE_ENTRY, then the
subclass must reimplement this function. Otherwise, this function is never called.

The object x is a BibolamaziFile object instance, which should be updated according to the filter’s
action and purpose.

The return value of this function is ignored. Subclasses should report warnings and logging
through Python’s logging mechanism (see doc of core.blogger) and should raise errors as
BibFilterError (preferrably, a subclass). Other raised exceptions will be interpreted as internal errors
and will open a debugger.

classmethod getHelpAuthor ()
Convenience function that returns he Ipauthor, with whitespace stripped. Use this when getting the
contents of the helpauthor text.

There’s no need to (translate: you should not) reimplement this function in your subclass.

classmethod getHelpDescription ()
Convenience function that returns he Ipdescript ion, with whitespace stripped. Use this when getting
the contents of the helpdescription text.

There’s no need to (translate: you should not) reimplement this function in your subclass.

classmethod getHelpText ()
Convenience function that returns helptext, with whitespace stripped. Use this when getting the con-
tents of the helptext text.

There’s no need to (translate: you should not) reimplement this function in your subclass.

getRunningMessage ()
Return a nice message to display when invoking the fitler. The default implementation returns name ().

6.2. Subpackages 25

Bibolamazi Documentation, Release 3.0

Define this to whatever you want in your subclass to describe what you’re doing. The core bibolamazi
program displays this information to the user as it runs the filter.

helpauthor = ¢
Your subclass should provide a helpauthor attribute, containing a one-line notice with the name of the
author that wrote the filter code. You may also add a copyright notice. The exact format is not specified.
This text is typically displayed at the top of the page generated by bibolamazi —--help <filter>.

You should also avoid accessing this class attribute, you should use get HelpAuthor () instead, which
will ensure that whitespace is properly stripped.

helpdescription = ‘Some filter that filters some entries’
Your subclass should provide a helpdescription attribute, containing a one-line description of what your
filter does. This is typically displayed when invoking bibolamazi --list-filters, along with
the filter name.

You should also avoid accessing this class attribute, you should use get HelpDescription () instead,
which will ensure that whitespace is properly stripped.

helptext = ¢
Your subclass should provide a helptext attribute, containing a possibly long, as detailed as possible de-
scription of how to use your filter. You don’t need to provide the basic ‘usage’ and option list, which are
automatically generated; but you should include all the text that would appear after the option list. This is
typically displayed when invoking bibolamazi —-help <filter>.

You should also avoid accessing this class attribute, you should use get He IpText () instead, which will
ensure that whitespace is properly stripped.

name ()
Returns the name of the filter as it was invoked in the bibolamazifile. This might be with, or without, the
filterpackage. This information should be only used for reporting purposes and might slightly vary.

If the filter was instantiated manually, and set InvokationName () was not called, then this function
returns the class name.

The subclass should not reimplement this function unless it really really really really feels it needs to.

prerun (bibolamazifile)
This function gets called immediately before the filter is run, after any preceeding filters have been exe-
cuted.

It is not very useful if the action () is BibFilter.BIB FILTER BIBOLAMAZIFILE, but it can
prove useful for filters with action BibFilter.BIB FILTER SINGLE_ENTRY, if any sort of pre-
processing task should be done just before the actual filtering of the data.

The default implementation does nothing.

requested_cache_accessors ()
This function should return a list of bibusercache.BibUserCacheAccessor class names of cache
objects it would like to use. The relevant caches are then collected from the various filters and automatically
instantiated and initialized.

The default implementation of this function returns an empty list. Subclasses should override if they want
to access the bibolamazi cache.

setBibolamaziFile (bibolamazifile)
Remembers bibolamazifile as the BibolamaziFile object that we will be acting on.

There’s no use overriding this. When writing filters, there’s also no need calling this explicitly, it’s done in
BibolamaziFile.

26 Chapter 6. Python API: Core Bibolamazi Module

Bibolamazi Documentation, Release 3.0

setInvokationName (filtername)
Called internally by bibolamazifile, so that name () returns the name by which this filter was invoked.

This function sets exactly what name () will return. Subclasses should not reimplement, the default
implementation should suffice.

exception bibolamazi.core.bibfilter.BibFilterError (filtername, message)
Bases: bibolamazi.core.butils.BibolamaziError

Exception a filter should raise if it encounters an error.

6.2.2 bibolamazi.core.bibusercache package

bibolamazi.core.bibusercache.tokencheckers module

This module provides a collection of useful token checkers that can be used to make sure the cache information is
always valid and up-to-date.

Recall the Bibolamazi Cache is organized as nested dictionaries in which the cached information is organized.

One main concern of the caching mechanism is that information be invalidated when it is no longer relevant (between
different runs of bibolamazi). This may be for example because the original bibtex entry from the source has changed.

Each cache dictionary (BibUserCacheDic) may be set a foken validator, that is a verifier instance class which will
invalidate items it detects as no longer valid. The validity of items is determined on the basis of validation tokens.

When an item in a cache dictionary is added or updated, a token (which can be any python value) is generated
corresponding to the cached value. This token may be, for example, the date and time at which the value was cached.
The validator then checks the tokens of the cache values and detects those entries whose token indicates that the
entries are no longer valid: for example, if the token corresponds to the date and time at which the entry was stored,
the validator may invalidate all entries whose token indicates that they are too old.

Token Checkers are free to decide what information to store in the tokens. See the tokencheckers module for
examples. Token checkers must derive from the base class TokenChecker.

class bibolamazi.core.bibusercache.tokencheckers.EntryFieldsTokenChecker (bibdata,

Sields=[],
store_type=False,
store_persons=[],

**kwargs)
Bases: bibolamazi.core.bibusercache.tokencheckers.TokenChecker

A TokenChecker implementation that checks whether some fields of a bibliography entry have changed.
This works by calculating a MDS5 hash of the contents of the given fields.
Constructs a token checker that will invalidate an entry if any of its fields given here have changed.

bibdata is a reference to the bibolamazifile’s bibliography data; this is the return value of
bibolamaziData ().

fields is a list of bibtex fields which should be checked for changes. Note that the ‘author’ and ‘editor’ fields are
treated specially, with the store_persons argument.

If store_type is True, the entry is also invalidated if its type changes (for example, from ‘@unpublished to
‘@article®).

store_persons is a list of person roles we should check for changes (see person roles in
pybtex.database.Entry : this is either ‘author’ or ‘editor’). Specify for example ‘author’ here
instead of in the fields argument. This is because pybtex treats the ‘author’ and ‘editor’ fields specially.

new_token (key, value, **kwargs)

6.2. Subpackages 27

mailto:'@unpublished
mailto:'@article

Bibolamazi Documentation, Release 3.0

class bibolamazi.core.bibusercache.tokencheckers.TokenChecker (**kwargs)

Bases: object
Base class for a token checker validator.

The new_token () function always returns True and cmp_tokens () just compares tokens for equality with
the == operator.

Subclasses should reimplement new_token () to return something useful. Subclasses may either use the
default implementation equality comparision for cmp_tokens () or reimplement that function for custom
token validation condition (e.g. as in TokenCheckerDate).

cmp_tokens (key, value, oldtoken, **kwargs)
Checks to see if the dictionary entry (key, value) is still up-to-date and valid. The old token, returned by a
previous call to new_token (), is provided in the argument oldroken.

The default implementation calls new_token () for the (key, value) pair and compares the new
token with the old token oldfoken for equality with the == operator. Depending on your use
case, this may be enough so you may not have to reimplement this function (as, for example, in
EntryFieldsTokenChecker).

However, you may wish to reimplement this function if a different comparision method is required. For
example, if the token is a date at which the information was retrieved, you might want to test how
old the information is, and invalidate it only after it has passed a certain amount of time (as done in
TokenCheckerDate).

It is advisable that code in this function should be protected against having the wrong type in oldtoken
or being given None. Such cases might easily pop up say between Bibolamazi Versions, or if the cache
was once not properly set up. In any case, it’s safer to trap exceptions here and return False to avoid an
exception propagating up and causing the whole cache load process to fail.

Return True if the entry is still valid, or False if the entry is out of date and should be discarded.

new_token (key, value, **kwargs)
Return a token which will serve to identify changes of the dictionary entry (key, value). This token may be
any Python picklable object. It can be anything that cmp_tokens () will undertsand.

The default implementation returns 7rue all the time. Subclasses should reimplement to do something
useful.

class bibolamazi.core.bibusercache.tokencheckers.TokenCheckerCombine (*args,

**kwargs)
Bases: bibolamazi.core.bibusercache.tokencheckers.TokenChecker

A TokenChecker implementation that combines several different token checkers. A cache entry is deemed
valid only if it considered valid by all the installed token checkers.

For example, you may want to both make sure the cache has the right version (with a
VersionTokenChecker and that it is up-to-date).

Constructor. Pass as arguments here instances of token checkers to check for, e.g.:

chk = TokenCheckerCombine (
VersionTokenChecker ('2.0"),
EntryFieldsTokenChecker (bibdata, ['title', 'Journal'])
)

cmp_tokens (key, value, oldtoken, **kwargs)

new_token (key, value, **kwargs)

28

Chapter 6. Python API: Core Bibolamazi Module

Bibolamazi Documentation, Release 3.0

class bibolamazi.core.bibusercache.tokencheckers.TokenCheckerDate (time_valid=datetime.timedelta(5),

**kwargs)
Bases: bibolamazi.core.bibusercache.tokencheckers.TokenChecker

A TokenChecker implementation that remembers the date and time at which an entry was set, and invalidates
the entry after an amount of time time_valid has passed.

The amount of time the information remains valid is given in the time_valid argument of the constructor or is set
with acall to set_time_valid(). In either case, you should provide a python datetime.time_delta
object.

cmp_tokens (key, value, oldtoken, **kwargs)
new_token (**kwargs)
set_time_valid (time_valid)

class bibolamazi.core.bibusercache.tokencheckers.TokenCheckerPerEntry (checkers={},

*rkwargs)
Bases: bibolamazi.core.bibusercache.tokencheckers.TokenChecker

A TokenChecker implementation that associates different TokenChecker‘s for individual entries, set manu-
ally.

By default, the items of the dictionary are always valid. When an entry-specific token checker is set with
add_entry_check (), that token checker is used for that entry only.

add_entry_check (key, checker)
Add an entry-specific checker.

key is the entry key for which this token checker applies. checker is the token checker instance itself. It is
possible to make several keys share the same token checker instance.

Note that no explicit validation is performed. (This can’t be done because we don’t even have a pointer to
the cache dict.) So you should call manually BibUserCacheDict.validate_item()

If a token checker was already set for this entry, it is replaced by the new one.

checker_for (key)
Returns the token instance that has been set for the entry key, or None if no token checker has been set for
that entry.

cmp_tokens (key, value, oldtoken, **kwargs)

has_entry_for (key)
Returns True if we have a token checker set for the given entry key.

new_token (key, value, **kwargs)

remove_entry_check (key)
As the name suggests, remove the token checker associated with the given entry key key. If no token
checker was previously set, then this function does nothing.

class bibolamazi.core.bibusercache.tokencheckers.VersionTokenChecker (this_version,

*kkwargs)
Bases: bibolamazi.core.bibusercache.tokencheckers.TokenChecker

A TokenChecker which checks entries with a given version number.

This is useful if you might change the format in which you store entries in your cache: adding a version number
will ensure that any old-formatted entries will be discarded.

Constructs a version validator token checker.

6.2. Subpackages 29

Bibolamazi Documentation, Release 3.0

this_version is the current version. Any entry that was not exactly marked with the version this_version will be
deemed invalid.

this_version may actually be any python object. Comparision is done with the equality operator == (actually
using the original TokenChecker implementation).

new_token (key, value, **kwargs)

Module contents

class bibolamazi.core.bibusercache.BibUserCache (cache_version=None)
Bases: object

The basic root cache object.
This object stores the corresponding cache dictionaries for each cache. (See cacheFor ().)
(Internally, the caches are stored in one root BibUserCacheDic.)

cacheExpirationTokenChecker ()
Returns a cache expiration token checker validator which is configured with the default cache invalidation
time.

This object may be used by subclasses as a token checker for sub-caches that need regular invalidation
(typically several days in the default configuration).

Consider using though installCacheExpirationChecker(), which simply applies a general validator to your
full cache; this is generally what you might want.

cacheFor (cache_name)
Returns the cache dictionary object for the given cache name. If the cache dictionary does not exist, it is
created.

hasCache ()
Returns True if we have any cache at all. This only returns False if there are no cache dictionaries defined.

installCacheExpirationChecker (cache_name)
Installs a cache expiration checker on the given cache.

This is a utility that is at the disposal of the cache accessors to easily set up an expiration validator on their
caches. Also, a single instance of an expiry token checker (see TokenCheckerDate) is shared between the
different sub-caches and handled by this main cache object.

The duration of the expiry is typically several days; because the token checker instance is shared this
cannot be changed easily nor should it be relied upon. If you have custom needs or need more control over
this, create your own token checker.

Returns: the cache dictionary. This may have changed to a new empty object if the cache didn’t validate!

WARNING: the cache dictionary may have been altered with the validation of the cache! Use the return
value of this function, or call BibUserCacheAccessor.cacheDic () again!

Note: this validation will not validate individual items in the cache dictionary, but the dictionary as a
whole. Depending on your use case, it might be worth introducing per-entry validation. For that, check
out the various token checkers in tokencheckers and call set_validation () to install a specific
validator instance.

loadCache (cachefobj)
Load the cache from a file-like object cachefobj.

This tries to unpickle the data and restore the cache. If the loading fails, e.g. because of an I/O error, the
exception is logged but ignored, and an empty cache is initialized.

30 Chapter 6. Python API: Core Bibolamazi Module

Bibolamazi Documentation, Release 3.0

Note that at this stage only the basic validation is performed; the cache accessors should then each initialize
their own subcaches with possibly their own specialized validators.

saveCache (cachefobj)
Saves the cache to the file-like object cachefobj. This dumps a pickle-d version of the cache information
into the stream.

setDefaultInvalidationTime (time_delta)
A timedelta object giving the amount of time for which data in cache is consdered valid (by default).

class bibolamazi.core.bibusercache.BibUserCacheAccessor (cache_name, bibolamazifile,
*rkwargs)
Bases: object

Base class for a cache accessor.

Filters should access the bibolamazi cache through a cache accessor. A cache accessor organizes how the caches
are used and maintained. This is needed since several filters may want to access the same cache (e.g. fetched
arXiv info from the arxiv.org API), so it is necessary to abstract out the cache object and how it is maintained
out of the filter. This also avoids issues such as which filter is responsible for creating/refreshing the cache, etc.

A unique accessor instance is attached to a particular cache name (e.g. ‘arxiv_info’). It is instantiated by the
BibolamaziFile. It is instructed to initialize the cache, possibly install token checkers, etc. at the beginning,
before running any filters. The accessor is free to handle the cache as it prefers—build it right away, refresh it on
demand only, etc.

Filters access the cache by requesting an instance to the accessor. This is done by calling
cache_accessor () (you can use bibolamaziFile () to get a pointer to the bibolamazifile object.).
Filters should declare in advance which caches they would like to have access to by reimplementing the
requested_cache_accessors () method.

Accessors are free to implement their public API how they deem it best. There is no obligation or particular
structure to follow. (Although refresh_cache(), fetch_missing_items(list), or similar function names may be
typical.)

Cache accessor objects are instantiated by the bibolamazi file. Their constructors should accept a keyword argu-
ment bibolamazifile and pass it on to the superclass constructor. Constructors should also accept **kwargs for
possible compatibility with future additions and pass it on to the parent constructor. The cache_name argument
of this constructor should be a fixed string passed by the subclass, identifying this cache (e.g. ‘arxiv_info’).

bibolamaziFile ()
Returns the parent bibolamazifile of this cache accessor. This may be useful, e.g. to initialize a token cache
validator in initialize().

Returns the object given in the constructor argument. Do not reimplement this function.

cacheDic ()
Returns the cache dictionary. This is meant as a ‘protected’ method for the accessor only. Objects that
query the accessor should use the accessor-specific API to access data.

The cache dictionary is a BibUserCacheD1ic object. In particular, subcaches may want to set custom
token checkers for proper cache invalidation (this should be done in the initialize () method).

This returns the data in the cache object that was set internally by the BibolamaziFile via the
method setCacheObj (). Don’t call that manually, though, unless you’re implementing an alternative
BibolamaziFile class !

cacheName ()
Return the cache name, as set in the constructor.

Subclasses do not need to reimplement this function.

6.2. Subpackages 31

Bibolamazi Documentation, Release 3.0

cacheObject ()
Returns the parent Bi bUserCache object in which cacheDic () is a sub-cache. This is provided FOR
CONVENIENCE! Don’t abuse this!

You should never need to access the object directly. Maybe just read-only to get some standard attributes
such as the root cache version. If you’re writing directly to the root cache object, there is most likely a
design flaw in your code!

Most of all, don’t write into other sub-caches!!

initialize (cache_obj)
Initialize the cache.

Subclasses should perform any initialization tasks, such as install foken checkers. This function should not
return anything.

Note that it is strongly recommended to install some form of cache invalidation, would it be just even an
expiry validator. You may want to call installCacheExpirationChecker () on cache_obj.

Note that the order in which the initialize() method of the various caches is called is undefined.

Use the cacheDic () method to access the cache dictionary. Note that if you install token checkers on
this cache, e.g. with cache_obj.installCacheExpirationChecker(), then the cache dictionary object may
have changed! (To be sure, call cacheDic () again.)

The default implementation raises a NotImplemented exception.

setCacheObj (cache_obj)
Sets the cache dictionary and cache object that will be returned by cacheDic() and cacheObject(), respec-
tively. Accessors and filters should not call (nor reimplement) this function. This function gets called by
the BibolamaziFile.

class bibolamazi.core.bibusercache.BibUserCacheDic (*args, **kwargs)

Bases: _abcoll.MutableMapping

Implements a cache where information may be stored between different runs of bibolamazi, and between differ-
ent filter runs.

This is a dictionary of key=value pairs, and can be used like a regular python dictionary.

This implements cache validation, i.e. making sure that the values stored in the cache are up-to-date. Each
entry of the dictionary has a corresponding foken, i.e. a value (of any python picklable type) which will identify
whether the cache is invalid or not. For example, the value could be datetime corresponding to the time when
the entry was created, and the rule for validating the cache might be to check that the entry is not more than e.g.
3 days old.

child _notify_changed (0bj)
iteritems ()

new_value_set (key=None)
Informs the dic that the value for key has been updated, and a new validation token should be stored.

If key is None, then this call is meant for the current object, so this call will relay to the parent dictionary.
set_parent (parent)

set_validation (tokenchecker, validate=True)
Set a function that will calculate the token’ for a given entry, for cache validation. The function ‘fn
shall compute a value based on a key (and possibly cache value) of the cache, such that comparision
with fncmp (by default equality) will tell us if the entry is out of date. See the documentation for the
tokencheckers modules for more information about cache validation.

If validate is True, then we immediately validate the contents of the cache.

32

Chapter 6. Python API: Core Bibolamazi Module

Bibolamazi Documentation, Release 3.0

validate ()
Validate this whole dictionary, i.e. make sure that each entry is still valid.

This calls validate_item() for each item in the dictionary.

validate_item (key)
Validate an entry of the dictionary manually. Usually not needed.

If the value is valid, and happens to be a BibUserCacheDic, then that dictionary is also validated.
Invalid entries are deleted.
Returns True if have valid item, otherwise False.

exception bibolamazi.core.bibusercache.BibUserCacheError (cache_name, message)
Bases: bibolamazi.core.butils.BibolamaziError

An exception which occurred when handling user caches. Usually, problems in the cache are silently ignored,
because the cache can usually be safely regenerated.

However, if there is a serious error which prevents the cache from being regenerated, for example, then this error
should be raised.

class bibolamazi.core.bibusercache.BibUserCachelist (*args, **kwargs)
Bases: _abcoll.MutableSequence

append (value)

insert (index, value)

6.3 bibolamazi.core.argparseactions module

This module defines callbacks and actions for parsing the command-line arguments for bibolamazi. You’re most
probably not interested in this API. (Not mentioning that it might change if I feel the need for it.)

bibolamazi.core.argparseactions.help_1list_filters()

bibolamazi.core.argparseactions.helptext_prolog ()

class bibolamazi.core.argparseactions.opt_action_help (option_strings, dest,
nargs=None, const=None,
default=None, type=None,

choices=None, required=False,

help=None, metavar=None)
Bases: argparse.Action

class bibolamazi.core.argparseactions.opt_action_version (option_strings, dest,
nargs=None, const=None,
default=None, type=None,
choices=None, re-
quired=False, help=None,

metavar=None)
Bases: argparse.Action

class bibolamazi.core.argparseactions.opt_init_empty template (nargs=I, **kwargs)
Bases: argparse.Action

class bibolamazi.core.argparseactions.opt_list_filters (nargs=0, **kwargs)
Bases: argparse.Action

class bibolamazi.core.argparseactions.opt_set_fine_log levels (nargs=I1, **kwargs)
Bases: argparse.Action

6.3. bibolamazi.core.argparseactions module 33

Bibolamazi Documentation, Release 3.0

class bibolamazi.core.argparseactions.opt_set_verbosity (nargs=1, **kwargs)
Bases: argparse.Action

bibolamazi.core.argparseactions.run_pager (fext)
Call pydoc.pager() in a unicode-safe way.

class bibolamazi.core.argparseactions.store_key_bool (option_strings, dest, nargs=I,
const=True, exception=<type ‘ex-
ceptions.ValueError’>, **kwargs)
Bases: argparse.Action

Handles an ghostscript-style option of the type ‘-dBoolKey’ or ‘-dBoolKey=0’.

class bibolamazi.core.argparseactions.store_key_const (option_strings, dest, nargs=I,
const=True, **kwargs)
Bases: argparse.Action
class bibolamazi.core.argparseactions.store_key_val (option_strings, dest, nargs=I,
exception=<type ‘excep-
tions.ValueError’>, ¥*kwargs)
Bases: argparse.Action
Handles an ghostscript-style option of the type ‘-sBoolKey=some-value’.

class bibolamazi.core.argparseactions.store_or_count (option_strings, dest, nargs=’2?,

**kwargs)
Bases: argparse.Action

6.4 bibolamazi.core.bibolamazifile module

The Main bibolamazifile module: this contains the BibolamaziFile class definition.

bibolamazi.core.bibolamazifile.AFTER CONFIG_TEXT = “%\n%\n% ALL CHANGES BEYOND THIS POINT W
Some text which is inserted immediately after the config section when saving bibolamazi files. Includes a
warning about losing any changes.

bibolamazi.core.bibolamazifile .BIBOLAMAZIFILE INIT=0
Bibolamazi file load state: freshly initialized, no data read. See doc for BibolamaziFile.

bibolamazi.core.bibolamazifile.BIBOLAMAZIFILE_LOADED =3
Bibolamazi file load state: data read and parsed, filters instanciated and data from sources loaded. See doc for
BibolamaziFile.

bibolamazi.core.bibolamazifile .BIBOLAMAZIFILE PARSED =2
Bibolamazi file load state: data read and parsed, filters instanciated but no sources loaded. See doc for
BibolamaziFile.

bibolamazi.core.bibolamazifile .BIBOLAMAZIFILE READ=1
Bibolamazi file load state: data read, not parsed. See doc for BibolamaziFile.

bibolamazi.core.bibolamazifile.BIBOLAMAZI_FILE_ENCODING = ‘utf-8’
The encoding used to read and write bibolamazi files. Don’t change this.

class bibolamazi.core.bibolamazifile.BibolamaziFile (fname=None, cre-
ate=Fualse, load_to_state=3,
use_cache=True, de-

fault_cache_invalidation_time=None)
Bases: object

Represents a Bibolamazi file.

34 Chapter 6. Python API: Core Bibolamazi Module

Bibolamazi Documentation, Release 3.0

This class provides an API to read and parse bibolamazi files, as well as load data defined in its configuration
section and interact with its filters.

A BibolamaziFile object may be in different load states:

*BIBOLAMAZIFILE_INIT: The BibolamaziFile object is initialized to an empty state. The file name
(fname ()) may be set already, but is None by default.

*BIBOLAMAZIFILE_READ: Data has been read from a given file, but not parsed. You may call certain
methods such as rawHeader () or configData (), bute.g. configCmds () will return an invalid
value.

*BIBOLAMAZIFILE_PARSED: Data has been read from a bibolamazi file and parsed, and filter objects
have been instanciated. Methods such as filters () or sourceLists () may be called.

*BIBOLAMAZIFILE_LOADED: The bibolamazi file has been read and parsed, filter objects have been
instanciated and bibtex data from the sources has been loaded. This is the “maximally loaded” state.

You may query the load state with get LoadState () and load a bibolamazi file either from the constructor
or by calling explicitly 1oad (). Some methods on this object may only be called if the object has reached a
certain load state. These methods are documented as such.

The bibliography database is accessed with bibliographyData (). You may change the entries in the
database via direct access (using the pybtex API), or using the method setEntries ().

To create a new bibolamazi file template, you may specify create=True to the constructor with a valid file name,
and save the object.

Create a BibolamaziFile object.
If fname is provided, the file is fully loaded (unless create is also provided).

If create is given and set to True, then an empty template is loaded and the internal file name is set to fname. The
internal state will be set to BTBOLAMAZIFILE_LOADED and calling saveToFile () will result in writing
this template to the file fname.

If load_to_state is given, then the file is only loaded up to the given state. See Jload() for
more details. The state should be one of BIBOLAMAZIFILE INIT, BIBOLAMAZIFILE READ,
BIBOLAMAZIFILE PARSED or BIBOLAMAZIFILE LOADED.

If use_cache is True (default), then when loading this file, we’ll attempt to load a corresponding cache file if it
exists. Note that even if use_cache is False, then cache will still be written when calling saveToFile ().

If default_cache_invalidation_time is given, then the default cache invalidation time is set before loading the
cache.

bibliographyData ()
Return the pybtex.database.BibliographyData object which stores all the bibliography entries.
This object is only instanciated and initialized once in the BIBOLAMAZIFILE_LOADED state. If
getLoadState () != BIBOLAMAZIFILE_LOADED, then this function returns None.
bibliographydata ()
Deprecated since version 2.0: Use bibliographyData() instead!

cacheAccessor (klass)
Returns the cache accessor instance corresponding to the given class.

See documentation of bibolamazi.core.bibusercache for more information about the bibola-
mazi cache.

cacheFileName ()
The file name where the cache will be stored. You don’t need to access this directly, the cache will be
loaded and saved automatically.

6.4. bibolamazi.core.bibolamazifile module 35

Bibolamazi Documentation, Release 3.0

Filters should only access the cache through cache accessors. See cacheAccessor().

configCmds ()
Return a list of parsed commands from the configuration section.

This returns a list of BibolamaziFileCmd objects.
This may be called in the state BTBOLAMAZIFILE_PARSED.

configData ()
Returns the configuration commands, with leading percent signs stripped, and without the begin and end
tags.

This may be called in the state BTBOLAMAZIFILE_READ.

configLineNo (filelineno)
Utility to convert file line number to config line number

Returns the line number in the config data corresponding to line filelineno in the file. Opposite of
fileLineNo ().

This may be called in the state BTBOLAMAZIFILE_READ.

fdir ()
Returns the directory name in which this bibolamazi file resides, always as a full path (using
os.path.realpath, resolving symlinks). The value is cached, so you may call this function several times
with little performance overhead.

If fname () is None (this is only possible if the load state is BIBOLAMAZIFILE INIT), then None is
returned.

fileLineNo (configlineno)
Utility to convert config line number to file line number

Returns the line number in the bibolamazi file corresponding to the config line number configlineno. The
configlineno refers to the line number INSIDE the config section, where line number 1 is right after the
begin config tag CONFIG_BEGIN_TAG.

This may be called in the state BTBOLAMAZIFILE_READ.

filters ()
Return a list of filter instances

This returns the list of all filter commands given in the bibolamazi config section. The instances have
already been instanciated with the proper options. The order of this list is exactly the order of the filters in
the config section.

If in the config section the same filter is invoked several times, then separate instances are returned in this
list with the appropriate ordering, as you’d expect.

fname ()
Returns the file name this object refers to.

If the state is any other than BTBOLAMAZIFILE_TINIT, then this function will never return None.

getLoadState ()
Returns the state of the BibolamaziFile object. One of BIBOLAMAZIFILE INIT,
BIBOLAMAZIFILE_ READ, BIBOLAMAZIFILE PARSED,or BIBOLAMAZIFILE_LOADED.

load (fname=[], to_state=3)
Load the given file into the current object.

If fname is None, then reset the object to an empty state. If fname is not given or an empty 1ist, then use
any previously loaded fname and its state.

36

Chapter 6. Python API: Core Bibolamazi Module

Bibolamazi Documentation, Release 3.0

This function may be called several times with different states to incrementally load the file, for example:

bibolamazifile.reset ()

load up to 'parsed' state
bibolamazifile.load (fname="somefile.bibolamazi.bib", to_state=BIBOLAMAZIFILE_PARSED)
continue loading up to fully 'loaded' state
bibolamazifile.load (fname="somefile.bibolamazi.bib", to_state=BIBOLAMAZIFILE_LQOADED)

If to_state is given, will only attempt to load the file up to that state. This can be useful, e.g.,
in a config editor which needs to parse the sections of the file but does not need to worry about
syntax errors. The state should be one of BIBOLAMAZIFILE INIT, BIBOLAMAZIFILE READ,
BIBOLAMAZIFILE_PARSED or BIBOLAMAZIFILE LOADED.

rawConfig ()
Return the raw configuration section. The returned value will NOT have the leading percent signs removed.

This may be called in the state BTBOLAMAZIFILE READ.

rawHeader ()
Return any content above the configuration section.

This may be called in the state BTBOLAMAZIFILE _READ.

rawRest ()
Return all the contents after the config section at the moment the file was read from the disk. This includes
the begin and end config section tags (CONFIG_BEGIN_TAG and CONFIG_END_TAG).

Any changes to the bibliography data will not be reflected here, even if you call saveToFile ().
This may be called in the state BTBOLAMAZIFILE _READ.

rawStartConfigDataLineNo ()
Returns the line number on which the begin config tag CONFTG_BEGIN_TAG is located. Line numbers
start at 1 at the top of the file like in any reasonable editor.

This may be called in the state BTBOLAMAZIFILE READ.

reset ()
Reset the current object to an empty state and unset the file name. This will reset the object to the state
BIBOLAMAZIFILE_INIT.

resolveSourcePath (path)
Resolves a path (for example corresponding to a source file) to an absolute file location.

This function expands ‘~/foo/bar’ to e.g. ‘/home/someone/foo/bar’; it also expands shell variables, e.g.
‘$HOME/foo/bar’ or ‘${MYBIBDIR }/foo/bar.bib’.

If the path is relative, it is made absolute by interpreting it as relative to the location of this bibolamazi file
(see £dir()).

Note: path should not be an URL.

saveToFile ()
Save the current bibolamazi file object to disk.

This will write to the file fname () in order:
the raw header data (rawHeader ()) unchanged
othe config section text (rawConfig ()) unchanged
othe bibliography data contained in bibliographyData (), saved in BibTeX format.

A warning message is included after the config section that the remainder of the file was automatically
generated.

6.4. bibolamazi.core.bibolamazifile module 37

Bibolamazi Documentation, Release 3.0

As the file fname is expected to already exist, it is always silently overwritten (so be careful).

setBibliographyData (bibliographydata)
Set the bibliographydata database object directly.

The object bibliographydata should be of instance pybtex.database.BibliographyData.

Warning: Filters should NOT set a different bibliographydata object: caches might have kept a pointer
to this object (see, for example EntryFieldsTokenChecker). Please use setEntries () in-
stead.

setConfigData (configdata)
Store the given data configdata in memory as the configuration section of this file.

This function cleanifies the configdata a bit by adding leading percent signs and forcing a final newline,
adds the config section begin and end tags, and then directly calls setRawConfig ().

setDefaultCachelInvalidationTime (time_delta)
A timedelta object giving the amount of time for which data in cache is consdered valid (by default).

Note that this function should be called BEFORE the data is loaded. If you just call, for example the
default constructor, this might be too late already. If you use the load() function, set the default cache
invalidation time before you load up to the state BIBOLAMAZIFILE_LOADED.

Note that you may also use the option in the constructor default_cache_invalidation_time, which has the
same effect as this funtion called at the appropriate time.

setEntries (bibentries)
Replace all the entries in the current bibliographydata object by the given entries.

Arguments:

*bibentries: the new entries to set. bibentries should be an iterable of (key, entry) (or, more precisely,
any valid argument for pybtex.database.BibliographyData.add_entries()).

Warning: This will remove any existing entries in the database.

This function alters the current bibliographyData () object, and does not replace it by a new object.
(L.e., if you kept a reference to the bibliographyData() object, the reference is still valid after calling this
function.)

setRawConfig (configblock)
Store the given configblock in memory as the raw configuration section of the bibolamazi file. We must be
at least in state BIBOLAMAZIFILE READ to call this function; this function will also reset to state back
to BIBOLAMAZIFILE_READ (as the configuration might have changed).

Note that confighlock is expected to start and end with the appropriate config section tags
(CONFIG_BEGIN_TAG and CONFIG_END TAG).

After calling this function, configData () will return the new configuration data. Call 1oad () to
re-instanciate filters and re-load sources.

sourcelists ()
Return a list of source lists, in the order they are specified in the configuration section.

Each item in the returned list is itself a list of alternative sources to consider.
This may be called in the state BTBOLAMAZIFILE_PARSED.

sources ()
Return a list of sources which have been read.

38 Chapter 6. Python API: Core Bibolamazi Module

Bibolamazi Documentation, Release 3.0

This is a list of strings. Each item in the returned list is one of the items in the corresponding list from
sourceLists () (the one that was actually found and read). If no corresponding item in sourceLists()
was readable, then the corresponding item in this list is None. For example:

suppose that we have the following instructions in the bibolamazi file:

#

src: srcl.bib

src: a.bib b.bib c.bib

src: x/x.bib y/y.bib

#

we would then have:

#

f.sourcelLists () == [["srcl.bib"], ["a.bib", "b.bib", "c.bib"], ["x/x.bib", "y/y.bib"]1]
suppose that "srcl.bib" exists, "a.bib" doesn't exist but "b.bib" exists, and neither
"x/x.bib" nor "y/y.bib" don't exist.

#

Then, after loading this object, we get:

#

f.sources () == ["srcl.bib", "b.bib", None]

This function may be called in the state BTBOLAMAZIFILE_LOADED.

class bibolamazi.core.bibolamazifile.BibolamaziFileCmd (cmd=None, text=""‘, lineno=-1,
linenoend=-1, info={})
A command in the bibolamazi file configuration

Stores the command name (e.g. ‘src’ or ‘filter’), additional text (the options), line number information and
possible additional information.

Object Properties:
ecmd: the command name. Currently this is ‘src’ or “filter’

otext: the text following the command. This is e.g. the sources list, or a filter name followed by options. In
general, it is anything following the ‘src:’ or ‘filter:” commands.

elineno: the line number at which this command is specified in the bibolamazi file, relative to the top of the
file. The first line of the file is line number 1.

elinenoend: the line number at which the command ends.

einfo: a dictionary with possible additional information which is available at parse time. For example, the
filter name for ‘filter’ commands is stored when parsing commands.

See also bibolamazifile.configCmds ().
Construct a BibolamaziFileCmd with the given cmd, text, lineno, linenoend and info.

exception bibolamazi.core.bibolamazifile.BibolamaziFileParseError (msg,
Jfname=None,

lineno=None)
Bases: bibolamazi.core.butils.BibolamaziError

bibolamazi.core.bibolamazifile.CONFIG_BEGIN_TAG = ‘% % %-BIB-OLA-MAZI-BEGIN-% % %’
The line which defines the beginning of a config section in a bibolamazi file.

bibolamazi.core.bibolamazifile.CONFIG_END_TAG = ‘% % %-BIB-OLA-MAZI-END-% % Y%’
The line which defines the end of a config section in a bibolamazi file.

exception bibolamazi.core.bibolamazifile.NotBibolamaziFileError (msg, fname=None,

lineno=None)
Bases: bibolamazi.core.bibolamazifile.BibolamaziFileParseError

6.4. bibolamazi.core.bibolamazifile module 39

Bibolamazi Documentation, Release 3.0

This error is raised to signify that the file specified is not a bibolamazi file—most probably, it does not contain

a valid configuration section.

6.5 bibolamazi.core.blogger module

Set up a logging framework for logging debug, information, warning and error messages.

Modules should get their logger using Python’s standard 10gging mechanism:

import logging
logger = logging.getLogger (__name_)

This allows for the user to be rather specific about which type of messages she/he would like to see.

class bibolamazi.core.blogger.BibolamaziConsoleFormatter (itycolors=False,

show_pos_info_level=None,
**kwargs)
Bases: logging.Formatter

Format log messages for console output. Customized for bibolamazi.
format (record)

setShowPosInfolLevel (level)

class bibolamazi.core.blogger.BibolamaziLogger (name, level=0)

Bases: 1ogging.Logger

A Logger used in Bibolamazi.

This logger class knows about an additional log level, LONGDEBUG.
Initialize the logger with a name and an optional level.

getSelflevel ()

Returns the level that was set on this logger. If no specific level was set, then returns logging. NOTSET. In

this respect, this is NOT the same as getEffectiveLevel().

longdebug (msg, *args, **kwargs)
Produce a log message at level LONGDEBUG.

class bibolamazi.core.blogger.ConditionalFormatter (defaultfint=None, datefimt=None,

**kwargs)
Bases: logging.Formatter

A formatter class.
Very much like logging.Formatter, except that different formats can be specified for different log levels.

Specify the different formats to the constructor with keyword arguments. E.g.:

ConditionalFormatter (' ',
DEBUG="DERUG: ',
INFO="'just some info... ")

This will use ‘%(message)s’ as format for all messages except with level other thand DEBUG or INFO, for

which their respective formats are used.
do_format (record, fimt)

format (record)

40

Chapter 6. Python API: Core Bibolamazi Module

Bibolamazi Documentation, Release 3.0

bibolamazi.core.blogger.logger = <bibolamazi.core.blogger.Bibolamazil.ogger object>
(OBSOLETE) The main logger object. This is a 1ogging.Logger object.

Deprecated since version 2.1: This object is still here to keep old code functioning. New code should use the
following idiom somewhere at the top of their module:

import logging
logger = logging.getlLogger (__name__)

(Just make sure the logging mechanism has been set up correctly already, see doc for blogger module.)

This object has an additional method longdebug() (which behaves similarly to debug()), for logging long debug
output such as dumping the database during intermediate steps, etc. This corresponds to bibolamazi command-
line verbosity level 3.

bibolamazi.core.blogger.setup_simple_ console_logging (logger=<logging.RootLogger
object>, stream=<open file

) _ _ ‘<stderr>’, mode ‘w’>)
Sets up the given logger object for simple console output.

The main program module may for example invoke this function on the root logger to provide a basic logging
mechanism.

6.6 bibolamazi.core.butils module

Various utilities for use within all of the Bibolamazi Project.

exception bibolamazi.core.butils.BibolamaziError (msg, where=None)
Bases: exceptions.Exception

Root bibolamazi error exception.
See also BibFilterError and BibUserCacheError.

bibolamazi.core.butils.call_with_args (fn, *args, **kwargs)
Utility to call a function fn with *args and **kwargs.

Jfn(*args) must be an acceptable function call; beyond that, additional keyword arguments which the function
accepts will be provided from **kwargs.

This function is meant to be essentially fn(*args, **kwargs), but without raising an error if there are arguments
in kwargs which the function doesn’t accept (in which case, those arguments are ignored).

bibolamazi.core.butils.get_version ()
Return the version string version_str, unchanged.

bibolamazi.core.butils.get_version_split ()
Return a 4-tuple (maj, min, rel, suffix) resulting from parsing the version obtained via
version.version_str.

............ TODO: FIXME: CURRENTLY, the elements are strings! why not integers? If not there, they
will/should be empty or None?

bibolamazi.core.butils.getbool (x)
Utility to parse a string representing a boolean value.

If x is already of integer or boolean type (actually, anything castable to an integer), then the corresponding
boolean convertion is returned. If it is a string-like type, then it is matched against something that looks like
‘t(rue)?’, ‘1°, ‘y(es)?” or ‘on’ (ignoring case), or against something that looks like ‘f(alse)?’, ‘0’, ‘n(0)?’ or ‘off’
(also ignoring case). Leading or trailing whitespace is ignored. If the string cannot be parsed, a ValueError
is raised.

6.6. bibolamazi.core.butils module 41

Bibolamazi Documentation, Release 3.0

bibolamazi.core.butils.guess_encoding decode (dat, encoding=None)

bibolamazi.core.butils.parse_timedelta (in_s)
Note: only positive timedelta accepted.

bibolamazi.core.butils.quotearg (x)

bibolamazi.core.butils.resolve_type (typename, in_module=None)
Returns a type object corresponding to the given type name typename, given as a string.

bibolamazi.core.butils.warn_deprecated (classname, oldname, newname, modulename=None,
explanation=None)

6.7 bibolamazi.core.main module

This module contains the code that implements Bibolamazi’s main functionality. It also provides the basic tools for
the command-line interface.

class bibolamazi.core.main.AddFilterPackageAction (option_strings, dest, nargs=None,

const=None, default=None,
type=None, choices=None,
required=False, help=None,

metavar=None)
Bases: argparse.Action

class bibolamazi.core.main.ArgsStruct (bibolamazifile, use_cache, cache_timeout)
Bases: tuple

bibolamazifile
Alias for field number 0

cache_timeout
Alias for field number 2

use_cache
Alias for field number 1

exception bibolamazi.core.main.BibolamaziNoSourceEntriesError
Bases: bibolamazi.core.butils.BibolamaziError
bibolamazi.core.main.get_args_parser ()
bibolamazi.core.main.main (argv=["-b’, ‘latex’, ‘-D’, ‘language=en’, ‘-d’, ‘_build/doctrees’, *.,
‘_build/latex’])

bibolamazi.core.main.run_bibolamazi (bibolamazifile, **kwargs)
bibolamazi.core.main.run_bibolamazi_args (args)

bibolamazi.core.main.setup_filterpackage_from_ argstr (argstr)
Add a filter package definition and path to filterfactory.filterpath from a string that is a e.g. a command-line
argument to —filterpath or a part of the environment variable BIBOLAMAZI_FILTER_PATH.

bibolamazi.core.main.setup_filterpackages_from_env ()

bibolamazi.core.main.verbosity_logger_level (verbosity)
Simple mapping of ‘verbosity level’ (used, for example for command line options) to correspondig logging level
(logging.DEBUG, logging.ERROR, etc.).

42 Chapter 6. Python API: Core Bibolamazi Module

Bibolamazi Documentation, Release 3.0

6.8 bibolamazi.core.version module

bibolamazi.core.version.version_str =‘3.0’
The version string. This is increased upon each release.

6.8. bibolamazi.core.version module 43

Bibolamazi Documentation, Release 3.0

44

Chapter 6. Python API: Core Bibolamazi Module

CHAPTER 7

Python API: Filter Utilities Package

7.1 bibolamazi.filters.util.arxivutil Module

class bibolamazi.filters.util.arxivutil.ArxivFetchedAPIInfoCacheAccessor (**kwargs)
Bases: bibolamazi.core.bibusercache.BibUserCacheAccessor

A BibUserCacheAccessor for fetching and accessing information retrieved from the arXiv API.

fetchArxivApiInfo (idlist)
Populates the given cache with information about the arXiv entries given in idlist. This must be, yes you
guessed right, a list of arXiv identifiers that we should fetch.

This function performs a query on the arXiv.org API, using the arxiv2bib library. Please note that you
should avoid making rapid fire requests in a row (this should normally not happen anyway thanks to our
cache mechanism). However, beware that if we get a 403 Forbidden HTTP answer, we should not
continue or else arXiv.org might interpret our requests as a DOS attack. If a 403 Forbidden HTTP
answer is received this function raises BibArxivApiFetchError with a meaningful error text.

Only those entries in idlist which are not already in the cache are fetched.
idlist can be any iterable.

getArxivApiInfo (arxivid)
Returns a dictionary:

{
'reference': <arxiv2bib.Reference>,
'bibtex': <bibtex string>

}

for the given arXiv id in the cache. If the information is not in the cache, returns None.
Don’t forget to first call fetchArxivApiInfo () toretrieve the information in the first place.

Note the reference part may be a arxiv2bib.ReferenceErrorInfo, if there was an error retreiving
the reference.

initialize (cache_obj, **kwargs)

classbibolamazi.filters.util.arxivutil.ArxivInfoCacheAccessor (**kwargs)
Bases: bibolamazi.core.bibusercache.BibUserCacheAccessor

A BibUserCacheAccessor for fetching and accessing information retrieved from the arXiv APIL.

complete_cache (bibdata, arxiv_api_accessor)
Makes sure the cache is complete for all items in bibdata.

45

Bibolamazi Documentation, Release 3.0

getArXivInfo (entrykey)
Get the arXiv information corresponding to entry citekey entrykey. If the entry is not in the cache, returns
None. Call complete_cache() first!

initialize (cache_obj, **kwargs)

rebuild_cache (bibdata, arxiv_api_accessor)
Clear and rebuild the entry cache completely.

revalidate (bibolamazifile)
Re-validates the cache (with validate()), and calls again complete_cache() to fetch all missing or out-of-
date entries.

exception bibolamazi.filters.util.arxivutil.BibArxivApiFetchError (msg)
Bases: bibolamazi.core.bibusercache.BibUserCacheError

bibolamazi.filters.util.arxivutil.detectEntryArXivInfo (eniry)
Extract arXiv information from a pybtex.database. Entry bibliographic entry.

Returns upon success a dictionary of the form:

{ 'primaryclass': <primary class, if available>,
'arxivid': <the (minimal) arXiv ID (in format XXXX.XXXX or archive/XXXXXXX)>,
'archiveprefix': value of the 'archiveprefix' field

'published': True/False <whether this entry was published in a Jjournal other than
'doi': <DOI of entry if any, otherwise None>
'yvear': <Year in preprint arXiv ID number. 4-digit, string type.>

}

Note that ‘published’ is set to True for PhD and Master’s thesis. Also, the arxiv.py filter handles this case
separately and explicitly, the option there -dThesesCountAsPublished=0 has no effect here.

If no arXiv information was detected, then this function returns None.
bibolamazi.filters.util.arxivutil.get_arxiv_cache_access (bibolamazifile)
bibolamazi.filters.util.arxivutil.setup_and_get_arxiv_ accessor (bibolamazifile)

bibolamazi.filters.util.arxivutil.stripArXivInfoInNote (noftestr)
Assumes that notestr is a string in a note={} field of a bibtex entry, and strips any arxiv identifier information
found, e.g. of the form ‘arxiv:XXXX.YYYY’ (or similar).

7.2 bibolamazi.filters.util.auxfile Module

Utilities (actually for now, utility) to parse .aux files from LaTeX documents.

bibolamazi.filters.util.auxfile.get_all auxfile citations (jobname, bibola-
mazifile, filtername,
search_dirs=None,
callback=None, re-

turn_set=True)
Get a list of bibtex keys that a specific LaTeX document cites, by inspecting its .aux file.

Look for the file <jobname>.aux in the current directory, or in the search directories search_dirs if given.
Parse that file for commands of the type \citation{ ..}, and collect all the arguments of such commands.
These commands are generated by calls to the \cite{} command in the LaTeX document.

This effectively gives a list of entries that a particular document cites.

Note: latex/pdfiatex must have run at least once on the document already.

46 Chapter 7. Python API: Filter Utilities Package

arxiv>,

CHAPTER 8

Credits, Copyright and Contact information

8.1 Copyright
Copyright (c) 2014 Philippe Faist

Bibolamazi is developed and maintained by Philippe Faist. It is distributed under the GNU General Public License
(GPL), Version 3 or higher.

8.2 Credits and Third-Party Code

This project also contains the following 3rd party code.

PybTeX is used as python library for parsing and writing BibTeX files.

Copyright (c) 2006, 2007, 2008, 2009, 2010, 2011 Andrey Golovizin

Full copyright notice is availble in this repo in the file 3rdparty/pybtex/COPYING.

Arxiv2Bib is a tool for querying the arxiv.org API for preprint details and for parsing its results.

Copyright (c) 2012, Nathan Grigg

Full copyright notice is available in this repo in the first lines of the file 3rdparty/arxiv2bib/arxiv2bib.py.

8.3 Contact

Please contact me for any bug reports, or if you want to contribute.

philippe.faist@bluewin.ch

47

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://pybtex.sourceforge.net/
http://nathangrigg.github.io/arxiv2bib/
http://arxiv.org/

Bibolamazi Documentation, Release 3.0

48

Chapter 8. Credits, Copyright and Contact information

CHAPTER 9

Indices and tables

¢ genindex
* modindex

e search

49

Bibolamazi Documentation, Release 3.0

50

Chapter 9. Indices and tables

Python Module Index

b

bibolamazi
bibolamazi
bibolamazi
bibolamazi
bibolamazi
bibolamazi
bibolamazi
bibolamazi
27
bibolamazi
bibolamazi
bibolamazi
bibolamazi

bibolamazi.
.filters.util.auxfile, 46

bibolamazi

.core,
.core

.core.
.core
.core
.core.
.core.
.core.

.Core
.Core
.Core.
.Core

21

.argparseactions, 33

bibfilter, 24

.bibfilter.argtypes,21
.bibfilter.factory, 21

bibolamazifile, 34
bibusercache, 30
bibusercache.tokencheckers,

.blogger, 40
.butils, 41

main, 42

.version, 43

filters.util.arxivutil, 45

51

Bibolamazi Documentation, Release 3.0

52

Python Module Index

Index

A

action() (bibolamazi.core.bibfilter.BibFilter method), 24
add_entry_check() (bibola-

bibolamazi.core.blogger (module), 40
bibolamazi.core.butils (module), 41
bibolamazi.core.main (module), 42

mazi.core.bibusercache.tokencheckers.TokenChecW@fEﬁ%}}pore'VerSion (module), 43

method), 29

AddFilterPackageAction (class in bibolamazi.core.main),
42

AFTER_CONFIG_TEXT (in module
mazi.core.bibolamazifile), 34

append() (bibolamazi.core.bibusercache.BibUserCacheList
method), 33

ArgsStruct (class in bibolamazi.core.main), 42

ArxivFetched APIInfoCacheAccessor (class in bibola-
mazi filters.util.arxivutil), 45

bibola-

ArxivinfoCacheAccessor (class in bibola-
mazi.filters.util.arxivutil), 45

B

BIB_FILTER_BIBOLAMAZIFILE (bibola-

mazi.core.bibfilter.BibFilter attribute), 24
BIB_FILTER_SINGLE_ENTRY (bibola-
mazi.core.bibfilter.BibFilter attribute), 24
BibArxivApiFetchError, 46
BibFilter (class in bibolamazi.core.bibfilter), 24
BibFilterError, 27
bibliographyData() (bibola-
mazi.core.bibolamazifile.BibolamaziFile
method), 35
bibliographydata() (bibola-
mazi.core.bibolamazifile.BibolamaziFile
method), 35
bibolamazi.core (module), 21
bibolamazi.core.argparseactions (module), 33
bibolamazi.core.bibfilter (module), 24
bibolamazi.core.bibfilter.argtypes (module), 21
bibolamazi.core.bibfilter.factory (module), 21
bibolamazi.core.bibolamazifile (module), 34
bibolamazi.core.bibusercache (module), 30
bibolamazi.core.bibusercache.tokencheckers
27

(module),

bibolamazi.filters.util.arxivutil (module), 45

bibolamazi.filters.util.auxfile (module), 46

BIBOLAMAZI_FILE_ENCODING (in module bibola-
mazi.core.bibolamazifile), 34

BibolamaziConsoleFormatter (class
mazi.core.blogger), 40

BibolamaziError, 41

bibolamazifile (bibolamazi.core.main.ArgsStruct
tribute), 42

BibolamaziFile (class in bibolamazi.core.bibolamazifile),

in bibola-

at-

34

bibolamaziFile() (bibolamazi.core.bibfilter.BibFilter
method), 25

bibolamaziFile() (bibola-
mazi.core.bibusercache.BibUserCacheAccessor
method), 31

BIBOLAMAZIFILE_INIT (in module bibola-
mazi.core.bibolamazifile), 34

BIBOLAMAZIFILE_LOADED (in module bibola-
mazi.core.bibolamazifile), 34

BIBOLAMAZIFILE_PARSED (in module bibola-
mazi.core.bibolamazifile), 34

BIBOLAMAZIFILE_READ (in module bibola-
mazi.core.bibolamazifile), 34

BibolamaziFileCmd (class in bibola-

mazi.core.bibolamazifile), 39
BibolamaziFileParseError, 39
Bibolamazilogger (class in bibolamazi.core.blogger), 40
BibolamaziNoSourceEntriesError, 42
BibUserCache (class in bibolamazi.core.bibusercache),

30

BibUserCacheAccessor (class in bibola-
mazi.core.bibusercache), 31

BibUserCacheDic (class in bibola-

mazi.core.bibusercache), 32
BibUserCacheError, 33

53

Bibolamazi Documentation, Release 3.0

BibUserCacheList (class in bibola-

configData() (bibolamazi.core.bibolamazifile.BibolamaziFile

mazi.core.bibusercache), 33 method), 36
configlineNo() (bibola-
C mazi.core.bibolamazifile.BibolamaziFile
cache_timeout (bibolamazi.core.main.ArgsStruct at- method), 36
tribute), 42
cacheAccessor() (bibolamazi.core.bibfilter.BibFilter D
method), 25 DefaultFilterOptions (class in bibola-
cacheAccessor() (bibola- mazi.core.bibfilter.factory), 21
mazi.core.bibolamazifile.BibolamaziFile detect_filter_package_listings() (in module bibola-
method), 35 mazi.core.bibfilter.factory), 23
cacheDic() (bibolamazi.core.bibusercache. BibUserCacheAcdetsot:_filters() (in module bibola-
method), 31 mazi.core.bibfilter.factory), 23
cacheExpirationTokenChecker() (bibola- detectEntryArXivInfo() (in module bibola-
mazi.core.bibusercache.BibUserCache mazi.filters.util.arxivutil), 46
method), 30 do_format() (bibolamazi.core.blogger.ConditionalFormatter
cacheFileName() (bibola- method), 40
mazi.core.bibolamazifile.BibolamaziFile
method), 35 E
cacheFor() (bibolamazi.core.bibusercache.BibUserCache EntryFieldsTokenChecker (class in bibola-
method), 30 mazi.core.bibusercache.tokencheckers), 27

cacheName() (bibolamazi.core.bibusercache.BibUserCache Agaessotass()

method), 31

cacheObject() (bibolamazi.core.bibusercache.BibUserCachePoeasdap Type

method), 31
call_with_args() (in module bibolamazi.core.butils), 41

(in module bibola-
mazi.core.bibfilter.argtypes), 21
(class in bibola-

mazi.core.bibfilter.argtypes), 21

error() (bibolamazi.core.bibfilter.factory.FilterArgumentParser

checker_for() (bibolamazi.core.bibusercache.tokencheckers. TokenCheglethRebE aGy

method), 29

child_notify_changed() (bibola-
mazi.core.bibusercache.BibUserCacheDic
method), 32

exit() (bibolamazi.core.bibfilter.factory.FilterArgumentParser

method), 22

F

cmp_tokens() (bibolamazi.core.bibusercache.tokencheckers filgkgnChepkisslamazi.core.bibolamazifile. BibolamaziFile

method), 28

cmp_tokens() (bibolamazi.core bibusercache.tokencheckers flokgnGhicckgifagsihine

method), 28

method), 36
(bibola-

mazi.filters.util.arxivutil. ArxivFetched APIInfoCache Accessor

cmp_tokens() (bibolamazi.core.bibusercache.tokencheckers. TokenCheglegrbaye 45

fileLineNo() (bibolamazi.core.bibolamazifile.BibolamaziFile

(in module bibola-
mazi.core.bibfilter.factory), 23

filter_bibentry() (bibolamazi.core.bibfilter.BibFilter
method), 25

filter_bibolamazifile() (bibolamazi.core.bibfilter.BibFilter

filter_arg_parser()

method), 29

cmp_tokens() (bibolamazi.core.bibusercache.tokencheckers. TokenChegl¢rBenEntry
method), 29

CommaStrList (class in bibola-
mazi.core.bibfilter.argtypes), 21

CommaStrListArgType (class in bibola-
mazi.core.bibfilter.argtypes), 21

complete_cache() (bibola-

method), 25

mazi filters.util.arxivutil. ArxivinfoCacheAccessorfilter_uses_default_arg_parser() (in module bibola-

method), 45 mazi.core.bibfilter.factory), 24
ConditionalFormatter (class in bibolamazi.core.blogger), FilterArgumentParser (class in bibola-
40 mazi.core.bibfilter.factory), 22
CONFIG_BEGIN_TAG (in module bibola- FilterCreate ArgumentError, 22
mazi.core.bibolamazifile), 39 FilterCreateError, 22
CONFIG_END_TAG (in module bibola- filterDeclOptions() (bibola-
mazi.core.bibolamazifile), 39 mazi.core.bibfilter.factory.DefaultFilterOptions
configCmds() (bibolamazi.core.bibolamazifile.BibolamaziFile method), 21
method), 36 FilterError, 23
54 Index

Bibolamazi Documentation, Release 3.0

filtername() (bibolamazi.core.bibfilter.factory.DefaultFilterOgttbosl() (in module bibolamazi.core.butils), 41

method), 22

getHelpAuthor() (bibolamazi.core.bibfilter.BibFilter class

filterOptions() (bibolamazi.core.bibfilter.factory.DefaultFilterOptions method), 25

method), 22
FilterOptionsParseError, 23
FilterOptionsParseErrorHintSInstead, 23

getHelpDescription() (bibolamazi.core.bibfilter.BibFilter
class method), 25
getHelpText() (bibolamazi.core.bibfilter.BibFilter class

filters() (bibolamazi.core.bibolamazifile.BibolamaziFile method), 25
method), 36 getLoadState() (bibola-
filterVarOptions() (bibola- mazi.core.bibolamazifile.BibolamaziFile
mazi.core.bibfilter.factory. DefaultFilterOptions method), 36
method), 22 getRunningMessage() (bibola-
fmt() (bibolamazi.core.bibfilter.factory.FilterCreateArgumentError ~ mazi.core.bibfilter.BibFilter method), 25
method), 22 getSelfLevel() (bibolamazi.core.blogger.Bibolamazil.ogger
fmt() (bibolamazi.core.bibfilter.factory.FilterCreateError method), 40
method), 23 getSOptNameFromArg() (bibola-
fmt() (bibolamazi.core.bibfilter.factory.FilterError mazi.core.bibfilter.factory.DefaultFilterOptions
method), 23 method), 22
fmt() (bibolamazi.core.bibfilter.factory.FilterOptionsParseErgoess_encoding_decode() (in module bibola-
method), 23 mazi.core.butils), 41
fmt() (bibolamazi.core.bibfilter.factory.FilterOptionsParseErrorHintSInstead
method), 23
fname() (bibolamazi.core.bibolamazifile.BibolamaziFile has_entry_for() (bibola-
method), 36 mazi.core.bibusercache.tokencheckers. TokenCheckerPerEntry
format() (bibolamazi.core.blogger.BibolamaziConsoleFormatter method), 29
method), 40 hasCache() (bibolamazi.core.bibusercache.BibUserCache
format() (bibolamazi.core.blogger.ConditionalFormatter method), 30
method), 40 help_list_filters() (in module bibola-

format_filter_help() (bibola-
mazi.core.bibfilter.factory.DefaultFilterOptions
method), 22

format_filter_help() (in module bibola-
mazi.core.bibfilter.factory), 24

G

get_all_auxfile_citations() (in module bibola-

mazi.filters.util.auxfile), 46
get_args_parser() (in module bibolamazi.core.main), 42

get_arxiv_cache_access() (in module bibola-
mazi.filters.util.arxivutil), 46

get_filter_class() (in module bibola-
mazi.core.bibfilter.factory), 24

get_module() (in module bibola-

mazi.core.bibfilter.factory), 24
get_version() (in module bibolamazi.core.butils), 41
get_version_split() (in module bibolamazi.core.butils), 41

mazi.core.argparseactions), 33

helpauthor (bibolamazi.core.bibfilter.BibFilter attribute),
26

helpdescription (bibolamazi.core.bibfilter.BibFilter at-
tribute), 26

helptext (bibolamazi.core.bibfilter.BibFilter attribute), 26

helptext_prolog() (in module bibola-
mazi.core.argparseactions), 33

initialize() (bibolamazi.core.bibusercache.BibUserCacheAccessor

method), 32

initialize() (bibolamazi.filters.util.arxivutil. ArxivFetched APIInfoCache Acce

method), 45

initialize() (bibolamazi.filters.util.arxivutil. ArxivinfoCacheAccessor

method), 46
insert() (bibolamazi.core.bibusercache.BibUserCacheList
method), 33
installCacheExpirationChecker()
mazi.core.bibusercache.BibUserCache
method), 30

(bibola-

item_at() (bibolamazi.core.bibfilter.factory.PrependOrderedDict

iteritems() (bibolamazi.core.bibusercache.BibUserCacheDic

getArgNameFromSOpt() (bibola-
mazi.core.bibfilter.factory.DefaultFilterOptions
method), 22

getArxivApilnfo() (bibola-
mazi.filters.util.arxivutil. ArxivFetched APIInfoCacheAccessgifethod), 23
method), 45

getArXivInfo() (bibola-

method), 32

mazi filters.util.arxivutil. ArxivInfoCacheAccessor

method), 45

Index

55

Bibolamazi Documentation, Release 3.0

L P

load() (bibolamazi.core.bibolamazifile.BibolamaziFile parse_optionstring() (bibola-
method), 36 mazi.core.bibfilter.factory.DefaultFilterOptions
load_precompiled_filters() (in module bibola- method), 22
mazi.core.bibfilter.factory), 24 parse_optionstring_to_optspec() (bibola-
loadCache() (bibolamazi.core.bibusercache.BibUserCache mazi.core.bibfilter.factory.DefaultFilterOptions
method), 30 method), 22
logger (in module bibolamazi.core.blogger), 40 parse_timedelta() (in module bibolamazi.core.butils), 42
longdebug() (bibolamazi.core.blogger.Bibolamazil.ogger parser() (bibolamazi.core.bibfilter.factory.DefaultFilterOptions
method), 40 method), 22
PrependOrderedDict (class in bibola-
M mazi.core.bibfilter.factory), 23
main() (in module bibolamazi.core.main), 42 prerun() (bibolamazi.core.bibfilter.BibFilter method), 26
make_filter() (in module bibola- Q

mazi.core.bibfilter.factory), 24
N quotearg() (in module bibolamazi.core.butils), 42

name() (bibolamazi.core.bibfilter.BibFilter method), 26 R _ ') . . .
new_token() (bibolamazi.core.bibusercache.tokencheckers.EﬂWﬁTiBﬁg@&k’éh@HE&@rcore'blbOIamaZIﬁle~Blb013maZ1Flle

method), 27 method), 37
new_token() (bibolamazi.core.bibusercache.tokencheckers. TiskeHenden(bibolamazi.core.bibolamazifile. BibolamaziFile
method), 28 method), 37
new_token() (bibolamazi.core.bibusercache.tokencheckers. ToR¥ReHEL (eiltodmagi core.bibolamazifile. BibolamaziFile
method), 28 method), 37
new_token() (bibolamazi.core.bibusercache.tokencheckers. TR @HERBfDRatalineNo() (bibola-
method), 29 mazi.core.bibolamazifile.BibolamaziFile
new_token() (bibolamazi.core.bibusercache.tokencheckers.TokenChedK’éi‘P@EEn?ﬂ/
method), 29 rebuild_cache() (bibola-
new_token() (bibolamazi.core.bibusercache.tokencheckers. Version Tok®aghtess-util.arxivutil. ArxivInfoCacheAccessor
method), 30 method), 46
new_value_set() (bibola- remove_entry_check() (bibola-
mazi.core.bibusercache.BibUserCacheDic mazi.core.bibusercache.tokencheckers. TokenCheckerPerEntry
method), 32 method), 29
NoSuchFilter, 23 requested_cache_accessors() (bibola-
NoSuchFilterPackage, 23 mazi.core.bibfilter.BibFilter method), 26
NotBibolamaziFileError, 39 reset() (bibolamazi.core.bibolamazifile.BibolamaziFile
method), 37
O reset_filters_cache() (in module bibola-
opt_action_help (class in bibola- mam.c.ore.blbﬁlter..factory),. 24 .
mazi.core.argparseactions), 33 resolve_type() (in module bibolamazi.core.butils), 42
opt_action_version (class in bibola- TesolveSourcePath() _ . __ (bibola-
mazi.core.argparseactions), 33 mazi.core.bibolamazifile.BibolamaziFile
opt_init_empty_template (class in bibola- _ method), 37 S .
mazi.core.argparseactions), 33 revalidate() (bibolamazi.filters.util.arxivutil. ArxivInfoCacheAccessor
opt_list_filters (class in bibolamazi.core.argparseactions), _ method), 46 . ' .
33 run_bibolamazi() (in module bibolamazi.core.main), 42
opt_set_fine_log_levels (class in bibola- Tun_bibolamazi_args() ~ (in module bibola-
mazi.core.argparseactions), 33 mazi.core.main), 42 _
opt_set_verbosity (class in bibola- un_pager() (in module bibolamazi.core.argparseactions),

mazi.core.argparseactions), 33 34

optionSpec() (bibolamazi.core.bibﬁlter.factory.DefaultFilter@tions

method), 22
saveCache() (bibolamazi.core.bibusercache.BibUserCache

method), 31

56 Index

Bibolamazi Documentation, Release 3.0

saveToFile() (bibolamazi.core.bibolamazifile.BibolamaziFilstore_key_bool (class in bibola-
method), 37 mazi.core.argparseactions), 34

set_at() (bibolamazi.core.bibfilter.factory.PrependOrderedDistiore_key_const (class in bibola-
method), 23 mazi.core.argparseactions), 34

set_items() (bibolamazi.core.bibfilter.factory.PrependOrderestbiet key_val (class in bibolamazi.core.argparseactions),
method), 23 34

set_parent() (bibolamazi.core.bibusercache.BibUserCacheDatore_or_count (class in bibola-
method), 32 mazi.core.argparseactions), 34

set_time_valid() (bibola- stripArXivInfolnNote() (in module bibola-
mazi.core.bibusercache.tokencheckers. TokenCheckerDate mazi.filters.util.arxivutil), 46
method), 29

set_validation() (bibola- T
mazi.core.bibusercache.BibUserCacheDic TokenChecker (class in bibola-
method), 32 mazi.core.bibusercache.tokencheckers), 28

setBibliographyData() (bibola- TokenCheckerCombine (class in bibola-

mazi.core.bibolamazifile.BibolamaziFile

mazi.core.bibusercache.tokencheckers), 28
TokenCheckerDate (class in bibola-

mazi.core.bibusercache.tokencheckers), 28
TokenCheckerPerEntry (class in bibola-

setCacheObj() (bibolamazi.core.bibusercache.BibUserCacheAccessor mazi.core.bibusercache.tokencheckers), 29

method), 38
setBibolamaziFile() (bibolamazi.core.bibfilter.BibFilter
method), 26
method), 32
setConfigData() (bibola-
mazi.core.bibolamazifile.BibolamaziFile
method), 38
setDefaultCachelnvalidationTime() (bibola-

mazi.core.bibolamazifile.BibolamaziFile
method), 38

setDefaultInvalidationTime() (bibola-
mazi.core.bibusercache.BibUserCache
method), 31

setEntries() (bibolamazi.core.bibolamazifile.BibolamaziFile
method), 38

setInvokationName() (bibolamazi.core.bibfilter.BibFilter
method), 26

setName() (bibolamazi.core.bibfilter.factory.FilterError
method), 23

setRawConfig() (bibola-
mazi.core.bibolamazifile. BibolamaziFile
method), 38

setShowPosInfoLevel() (bibola-

mazi.core.blogger.BibolamaziConsoleFormatter
method), 40
setup_and_get_arxiv_accessor() (in module
mazi.filters.util.arxivutil), 46
setup_filterpackage_from_argstr() (in module bibola-
mazi.core.main), 42
setup_filterpackages_from_env() (in module bibola-
mazi.core.main), 42
setup_simple_console_logging() (in module bibola-
mazi.core.blogger), 41

bibola-

U

use_auto_case() (bibola-
mazi.core.bibfilter.factory.DefaultFilterOptions
method), 22

use_cache (bibolamazi.core.main.ArgsStruct attribute),
42

V

validate() (bibolamazi.core.bibusercache.BibUserCacheDic
method), 32

validate_filter_package() (in module bibola-
mazi.core.bibfilter.factory), 24
validate_item() (bibola-

mazi.core.bibusercache.BibUserCacheDic
method), 33
verbosity_logger_level() (in
mazi.core.main), 42
version_str (in module bibolamazi.core.version), 43
VersionTokenChecker (class in bibola-
mazi.core.bibusercache.tokencheckers), 29

module bibola-

W

warn_deprecated() (in module bibolamazi.core.butils), 42

sourceLists() (bibolamazi.core.bibolamazifile. BibolamaziFile

method), 38
sources() (bibolamazi.core.bibolamazifile.BibolamaziFile
method), 38

Index

57

	Introduction to Bibolamazi
	Example Usage Scenario
	Teaser: Features

	Downloading and Installing Bibolamazi
	The Bibolamazi Application
	Installing the Command-Line Interface

	Using the Bibolamazi Application
	Bibolamazi Operating Mode
	The Bibolamazi Configuration Section
	Example/Template Configuration Section
	Available Filters
	Filter Packages

	Using Bibolamazi in Command-Line
	First Steps With Bibolamazi Command-Line
	Bibolamazi Operating Mode
	The Bibolamazi Configuration Section
	Content of the Configuration Section
	Example Full Bibolamazi File
	Querying Available Filters and Filter Documentation
	Specifying Filter Packages

	Writing a New Filter
	Example of a custom filter
	Developing Custom filters
	The Filter Module
	Passing Arguments to the Filter
	Filter General Help Documentation
	Argdocs: Filter Argument Documentation
	Customizing Default Behavior

	Python API: Core Bibolamazi Module
	Module contents
	Subpackages
	bibolamazi.core.argparseactions module
	bibolamazi.core.bibolamazifile module
	bibolamazi.core.blogger module
	bibolamazi.core.butils module
	bibolamazi.core.main module
	bibolamazi.core.version module

	Python API: Filter Utilities Package
	bibolamazi.filters.util.arxivutil Module
	bibolamazi.filters.util.auxfile Module

	Credits, Copyright and Contact information
	Copyright
	Credits and Third-Party Code
	Contact

	Indices and tables
	Python Module Index

